

Информационные

технологии в экологии

Рассматривается задача моделирования консолидационных процессов с учетом засоленности вод, температурного режима и осмотических процессов. Предлагается расширение модели на трехмерный случай. Приводятся данные экспериментального анализа применимости различных специальных численных методов к решению задач относительно этой модели.

© В.А. Богаенко, 2010

УДК 519.6

В.А. БОГАЕНКО

АЛГОРИТМЫ РЕШЕНИЯ ТРЕХМЕРНЫХ РЕЛАКСАЦИОННЫХ ЗАДАЧ ФИЛЬТРАЦИОННОЙ КОНСОЛИДАЦИИ С УЧЕТОМ ОСМОТИЧЕСКИХ ПРОЦЕССОВ

Введение. Изменение режимов грунтовых или наземных вод может стать причиной развития опасных процессов, таких как проседание поверхности в результате фильтрационной консолидации грунтов. Существенное влияние на данные процессы имеет засоленность вод и температурный режим.

Развитие таких процессов на протяжении длительного периода времени может привести к ухудшению качественных показателей построенных на соответствующих грунтах объектов или природных систем.

Возникает необходимость достаточно точного моделирования консолидационных процессов путем построения более общих математических моделей и особенно численных алгоритмов решения на их основе практических задач.

Рассматривается задача фильтрационной консолидации с учетом релаксации, процессов осмоса и термоосмоса [1] в трехмерной постановке и алгоритмы ее численного решения. Поскольку задача эта нелинейная, а при небольших значениях релаксационных коэффициентов становится еще и жесткой, возникает необходимость решать ее с малым шагом по времени и большой размерностью сетки, что обуславливает использование специальных алгоритмов.

Трехмерная математическая модель. Математическую модель фильтрационной консолидации с учетом осмотических и термоосмотических процессов построим в векторной форме, отталкиваясь от таких исходных зависимостей.

Обобщенный закон Дарси–Герсеванова [1, 2], который учитывает релаксационность фильтрационного процесса, осмотическую и термоосмотическую фильтрацию, запишем в виде

$$\vec{u} + \lambda_1 \frac{\partial \vec{u}}{\partial t} = -k \operatorname{grad}(H + \lambda_2 \frac{\partial H}{\partial t}) + v \operatorname{grad}(C + \lambda_1 \frac{\partial C}{\partial t}) + k_T \operatorname{grad}(T + \lambda_1 \frac{\partial T}{\partial t}), \quad (1)$$

где \vec{u} — скорость фильтрации; λ_1 — параметр релаксации скорости фильтрации; λ_2 — параметр релаксации давления; k — коэффициент фильтрации; H — избыточный напор; V — коэффициент осмоса; C — концентрация солей в жидкой фазе; k_T — коэффициент термоосмоса; T — температура.

Обобщенный закон Фика [3], учитывающий релаксационные явления, запишем следующим образом:

$$\vec{q} + \tau_1 \frac{\partial \vec{q}}{\partial t} = -D \operatorname{grad}(C + \tau_2 \frac{\partial C}{\partial t}),$$
 (2)

где \vec{q} — диффузионный поток; τ_1 — параметр релаксации диффузионного потока; τ_2 — параметр релаксации концентрации; D — коэффициент диффузии.

Уравнение конвективной диффузии растворителя при фильтрации порового раствора получается из уравнения баланса массы в виде [4]

$$\sigma \frac{\partial C}{\partial t} + \operatorname{div} \vec{q} + \operatorname{div} C \vec{u} = 0, \qquad (3)$$

где о - пористость.

Учитывая (2) получаем

$$\sigma \tau_1 \frac{\partial^2 C}{\partial t^2} + \sigma \frac{\partial C}{\partial t} + \operatorname{div}(C\vec{u} + \tau_1 \frac{\partial}{\partial t}(C\vec{u})) = \operatorname{div}(D\operatorname{grad}(C + \tau_2 \frac{\partial C}{\partial t})). \tag{4}$$

С учетом (1) –

$$\sigma \tau_{1} \frac{\partial^{2} C}{\partial t^{2}} + \sigma \frac{\partial C}{\partial t} = \operatorname{div}(D\operatorname{grad}(C + \tau_{2} \frac{\partial C}{\partial t})) + \\
+ \frac{k\lambda_{2}}{\lambda_{1}} \operatorname{div}\left[(1 + \tau_{1} \frac{\partial}{\partial t})(C\operatorname{grad}H) \right] + \frac{k}{\lambda_{1}} (1 - \frac{\lambda_{2}}{\lambda_{1}}) \operatorname{div}\left[(1 + \tau_{1} \frac{\partial}{\partial t})(C \int_{0}^{t} \operatorname{grad}He^{\frac{t - \tau}{\lambda_{1}}} d\tau) \right] - \\
- v \operatorname{div}\left[(1 + \tau_{1} \frac{\partial}{\partial t})(C\operatorname{grad}C) \right] - k_{T} \operatorname{div}\left[(1 + \tau_{1} \frac{\partial}{\partial t})(C\operatorname{grad}T) \right]. \tag{5}$$

Уравнение для избыточного напора получается с учетом (1) из линейного закона уплотнения [5]

$$\operatorname{div} \vec{u} + \frac{a\gamma}{1+\overline{e}} \frac{\partial H}{\partial t} = 0$$
,

где a – коэффициент уплотнения; γ – удельный вес жидкости; \overline{e} – среднее значение коэффициента пористости, и имеет вид

$$\lambda_{1} \frac{\partial^{2} H}{\partial t^{2}} + \frac{\partial H}{\partial t} = \operatorname{div}(C_{v} \operatorname{grad}(H + \lambda_{2} \frac{\partial H}{\partial t})) - \operatorname{div}(\mu \operatorname{grad}(C + \lambda_{1} \frac{\partial C}{\partial t})) - \operatorname{div}(\theta \operatorname{grad}(T + \lambda_{1} \frac{\partial T}{\partial t})), \tag{6}$$

где $C_v = \frac{k(1+\overline{e})}{a\gamma}$ — коэффициент консолидации, $\mu = v\frac{C_v}{k}$, $\theta = k_T\frac{C_v}{k}$.

Уравнение теплопереноса примем в виде

$$C_T \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \operatorname{grad} T) - \rho C_{\rho} \operatorname{div}(T\vec{u}).$$

После подстановки в него уравнения (1) получим

$$\frac{\partial T}{\partial t} = \operatorname{div}(\lambda_0 \operatorname{grad} T) + \frac{k_1 \lambda_2}{\lambda_1} \operatorname{div}(T \operatorname{grad} H) + \frac{k}{\lambda_1} (1 - \frac{\lambda_2}{\lambda_1}) \operatorname{div} \left[T \int_0^t \operatorname{grad} H e^{-\frac{t - \tau}{\lambda_1}} d\tau \right] - v_1 \operatorname{div}(T \operatorname{grad} C) - k_2 \operatorname{div}(T \operatorname{grad} T),$$
(7)

где $C_{\scriptscriptstyle T}$ – объемная теплоемкость грунта; $C_{\scriptscriptstyle
ho}$ – удельная теплоемкость грунта;

 λ – коэффициент теплопроводности грунта; ρ – плотность раствора; $\lambda_0 = \frac{\lambda}{C_x}$,

$$k_1 = \frac{k\rho C_{\rho}}{C_T}, \ v_1 = \frac{v\rho C_{\rho}}{C_T}, \ k_2 = \frac{k_T \rho C_{\rho}}{C_T}.$$

Система интегро-дифференциальных уравнений (5)–(7) преобразовывается в систему дифференциальных уравнений заменой

$$H = \frac{1}{\lambda_{t}}V + \frac{\partial V}{\partial t}$$

и принимает вид

$$\sigma \tau_{1} \frac{\partial^{2} C}{\partial t^{2}} + \sigma \frac{\partial C}{\partial t} = div(D \operatorname{grad}(C + \tau_{2} \frac{\partial C}{\partial t})) + \\
+ \frac{k}{\lambda_{1}} \operatorname{div} \left[(1 + \tau_{1} \frac{\partial}{\partial t})(C \operatorname{grad} V) \right] + \frac{k\lambda_{2}}{\lambda_{1}} \operatorname{div} \left[(1 + \tau_{1} \frac{\partial}{\partial t})(C \operatorname{grad} \frac{\partial V}{\partial t}) \right] - \\
- v \operatorname{div} \left[(1 + \tau_{1} \frac{\partial}{\partial t})(C \operatorname{grad} C) \right] - k_{T} \operatorname{div} \left[(1 + \tau_{1} \frac{\partial}{\partial t})(C \operatorname{grad} T) \right], \tag{8}$$

$$\lambda_{1}^{2} \frac{\partial^{3} V}{\partial t^{2}} + \lambda_{1} \frac{\partial^{2} V}{\partial t^{2}} + \frac{\partial V}{\partial t} = \operatorname{div}(C_{v} \operatorname{grad}(V + (\lambda_{1} + \lambda_{2}) \frac{\partial V}{\partial t} + \lambda_{1} \lambda_{2} \frac{\partial^{2} V}{\partial t^{2}})) - \\
- \operatorname{div}(\mu \operatorname{grad}(C + \lambda_{2} \frac{\partial C}{\partial t})) - \operatorname{div}(\theta \operatorname{grad}(T + \lambda_{2} \frac{\partial T}{\partial t})), \tag{9}$$

$$\frac{\partial T}{\partial t} = \operatorname{div}(\lambda_0 \operatorname{grad} T) + \frac{k_1}{\lambda_1} \operatorname{div}(T \operatorname{grad} V) + \frac{k \lambda_2}{\lambda_1} \operatorname{div}(T \operatorname{grad} \frac{\partial V}{\partial t}) - -v_1 \operatorname{div}(T \operatorname{grad} C) - k_2 \operatorname{div}(T \operatorname{grad} T).$$
(10)

Краевые условия к задаче (8)–(10) поставим следующим образом [2]: – на непроницаемой части границы Γ_1 области решения Ω

$$\left. \frac{\partial \{C, H, T\}}{\partial \vec{n}} \right|_{\Gamma_1} = 0, \text{ откуда } \frac{\partial \{V, \frac{\partial V}{\partial t}\}}{\partial \vec{n}} \right|_{\Gamma_2} = 0; \tag{11}$$

— на дренированной части границы Γ_2 области решения Ω для функции избыточных напоров

$$H\big|_{\Gamma_2} = \tilde{H}(t)$$
, откуда $V\big|_{\Gamma_2} = \tilde{V}(t) = \lambda_1 \tilde{H}(t)$, $\frac{\partial V}{\partial t}\Big|_{\Gamma_2} = 0$, (12)

для функции концентрации солей при втекании солевого раствора

$$C\big|_{\Gamma_2} = \tilde{C}(t),\tag{13}$$

для функции концентрации солей при быстром их выносе

$$\left. \frac{\partial C}{\partial \bar{n}} \right|_{\Gamma_2} = 0. \tag{14}$$

Для поля температур поставим следующие краевые условия. На границе Γ_3 контакта грунта с нагретой водой теплообмен будем описывать следующим образом:

$$\lambda \frac{\partial T}{\partial \vec{n}}\Big|_{\Gamma_3} = \omega_T \Big(\tilde{T}(t) - T \Big|_{\Gamma_3} \Big), \tag{15}$$

где $\tilde{T}(t)$ — температура воды, а $\omega_{\!\scriptscriptstyle T}$ — коэффициент скорости теплообмена.

На границе Γ_4 , где грунт контактирует с воздухом, кроме теплообмена будем учитывать и такие процессы как поглощение грунтом солнечной радиации, тепловое излучение грунта как «черного тела» и испарение. Для функции избыточных напоров краевое условие на границе испарения следующее [6]:

$$k \frac{\partial H}{\partial \vec{n}}\Big|_{\Gamma_{-}} = -\gamma_{s} T\Big|_{\Gamma_{4}}.$$
 (16)

Краевое условие для поля температур в этом случае принимает вид [6]

$$\lambda \frac{\partial T}{\partial \vec{n}}\bigg|_{\Gamma_{c}} = \gamma_{s} R_{s} + \omega_{T} (\tilde{T}_{a}(t) - T\big|_{\Gamma_{4}}) - \sigma_{T} (T\big|_{\Gamma_{4}})^{4} + k \sigma \rho (Q + C_{\rho} T\big|_{\Gamma_{4}}) \frac{\partial H}{\partial \vec{n}},$$

а после подстановки (16)

$$\lambda \frac{\partial T}{\partial \vec{n}}\Big|_{\Gamma_4} = \gamma_s R_s + \omega_T \tilde{T}_a(t) - (\omega_T + \gamma_s \sigma \rho Q) T\Big|_{\Gamma_4} - \gamma_s \sigma \rho C_\rho (T\Big|_{\Gamma_4})^2 - \sigma_T (T\Big|_{\Gamma_4})^4, \quad (17)$$

где γ_s — коэффициент поглощения солнечной энергии грунтом; R_s — солнечная энергия на единицу площади грунта; $\tilde{T}_a(t)$ — температура воздуха; σ_T — коэффициент излучения грунта как «черного тела»; Q — теплоемкость испарения.

Методика численного решения.

Приближенное решение задачи (8)–(15) в трехмерном случае будем искать с использованием продольной схемы метода прямых [7] по аналогии с использованием этой схемы к одномерным задачам фильтрационной консолидации в [1].

Введем в рассмотрение сетку

$$\omega_{\vec{h}} = {\vec{x} = (x_1, x_2, x_3) = (i_1 h_1, i_2 h_2, i_3 h_3),}$$

$$\vec{i} = (i_1, i_2, i_3) = \overline{0, (N_1 + 1, N_2 + 1, N_3 + 1)}, h_i = \frac{l_i}{N_i + 0.5}},$$

где l_i – линейные размеры области решения, а N_i – количество шагов дискретизации по каждому измерению.

Решение будем искать в виде вектор-функций $\vec{C}, \vec{V}, \vec{T}$, каждый компонент которых отвечает определенному узлу сетки. Введем функцию преобразования трехмерной нумерации узлов сетки к одномерной нумерации функций в векторфункциях:

$$I(i, j, k) = iN_1N_2 + jN_2 + k$$
.

Во введенных обозначениях, после дискретизации производных по пространству, система (8)–(10) преобразуется в следующую систему нелинейных дифференциальных уравнений (тут и в дальнейшем знак вектора над искомыми вектор-функциями опускаем и считаем все коэффициенты уравнений постоянными):

$$\sigma \tau_{1} \frac{d^{2}C}{dt^{2}} + (\sigma E - D\tau_{2}A) \frac{dC}{dt} = DAC + \frac{k}{2\lambda_{1}} (B(C) + \tau_{1} \frac{dB(C)}{dt})V + \frac{k}{2\lambda_{1}} ((\tau_{1} + \lambda_{2})B(C) + \lambda_{2}\tau_{1} \frac{dB(C)}{dt}) \frac{dV}{dt} + \frac{k\lambda_{2}\tau_{1}}{2\lambda_{1}} B(C) \frac{d^{2}V}{dt^{2}} - \frac{v}{2} A\overline{C^{2}} - \frac{v\tau_{1}}{2} \frac{dB(C)}{dt} C - \frac{v\tau_{1}}{2} B(C) \frac{dC}{dt} - \frac{k_{T}\tau_{1}}{2} B(C) \frac{dT}{dt} - \frac{k_{T}}{2} (B(C) + \tau_{1} \frac{dB(C)}{dt})T, \tag{18}$$

$$\lambda_{1}^{2} \frac{d^{3}V}{dt^{2}} + \lambda_{1} (2E - \lambda_{2}c_{v}A) \frac{d^{2}V}{dt^{2}} + (E - (\lambda_{1} + \lambda_{2})c_{v}A) \frac{dV}{dt} =$$

$$= c_{v}AV - \mu \lambda_{1}AC - \mu \lambda_{1}^{2}A \frac{dC}{dt} - \theta \lambda_{1}AT - \theta \lambda_{1}^{2}A \frac{dT}{dt},$$

$$\frac{dT}{dt} = \lambda_{0}AT + \frac{k_{1}}{2\lambda_{1}}B(T)V + \frac{k\lambda_{2}}{2\lambda_{1}}B(T) \frac{dV}{dt} - \frac{v_{1}}{2}B(T)C - \frac{k_{2}}{2}AT^{2}.$$
(20)

Здесь A и B(C) – линейные операторы, являющиеся дискретными аналогами операторов divgrad(·) и 2 div(Cgrad(·)), которые в трехмерном случае имеют следующий вид:

$$A = \frac{1}{2}B(1),$$

$$B(C) = B_1(C) + B_2(C) + B_3(C),$$

$$\left[B_1(C)V\right]_{I(i,j,k)} = \frac{1}{h_1^2} \left[(C_{I(i-1,j,k)} + C_{I(i,j,k)})V_{I(i-1,j,k)} - (C_{I(i-1,j,k)} + 2C_{I(i,j,k)} + C_{I(i+1,j,k)})V_{I(i,j,k)} + (C_{I(i,j,k)} + C_{I(i+1,j,k)})V_{I(i+1,j,k)} \right],$$

где в случае краевых условий (11), (14)

$$\{C, \frac{dC}{dt}, T, V, \frac{dV}{dt}, \frac{d^2V}{dt^2}\}_{I(i\pm 1, j, k)} = \{C, \frac{dC}{dt}, T, V, \frac{dV}{dt}, \frac{d^2V}{dt^2}\}_{I(i, j, k)}, x_{i\pm 1, j, k} \in \{\Gamma_1, \Gamma_2\},$$

в случае краевых условий (12), (13)

$$\{C, T, V\}_{I(i\pm 1, j, k)} = \{\tilde{C}, \tilde{T}, \tilde{V}\}_{I(i\pm 1, j, k)}, \{\frac{dC}{dt}, \frac{dV}{dt}, \frac{d^2V}{dt^2}\}_{I(i\pm 1, j, k)} = 0, x_{i\pm 1, j, k} \in \{\Gamma_2, \Gamma_3\},$$

в случае условия (15)

$$T_{I(i\pm 1,j,k)} = T_{I(i,j,k)} + \frac{h_{\mathbf{I}}\omega_{T}}{\lambda} \left(\tilde{T}_{a} \Big|_{I(i,j,k)} - T_{I(i,j,k)} \right),$$

в случае условия (16)

$$V_{I(i\pm 1,j,k)} = V_{I(i,j,k)} - \frac{\lambda_1 h_1 \gamma_s}{k} T_{I(i,j,k)},$$

в случае условия (17)

16

$$\begin{split} T_{I(i\pm 1,j,k)} &= T_{I(i,j,k)} + \frac{h_1}{\lambda} \Big(\gamma_s R_s + \omega_T \, \tilde{T}_a \Big|_{I(i,j,k)} - (\omega_T + \gamma_s \sigma \rho Q) T_{I(i,j,k)} - \\ &- \gamma_s \sigma \rho \, C_\rho (T_{I(i,j,k)})^2 - \sigma_T (T_{I(i,j,k)})^4 \Big). \end{split}$$

Операторы $B_2(C)$ и $B_3(C)$ и дискретизация краевых условий на элементах границы, параллельных координатным плоскостям y=0 и z=0, имеют аналогичный вид.

От задачи (18)–(20) переходим к следующей задаче Коши для системы нелинейных дифференциальных уравнений первого порядка:

$$\frac{dz}{dt} = R(z)z + F(z), t > 0,
z(t) = [V_1, V_2, V_3, C_1, C_2, T],
V_1 \equiv V, V_2 = \frac{dV}{dt}, V_3 = \frac{d^2V}{dt^2}, C_1 \equiv C, C_2 = \frac{dC}{dt},
z(0) = \left[0, H_0, -\frac{H_0}{\lambda_1}, C_0, 0, T_0\right].$$
(21)

Следующие выражения для оператора R(z) и вектора F(z) получаем после подстановки уравнения (20) в уравнения (18), (19).

$$\begin{split} F(z) &= \frac{1}{2} \Bigg[0, 0, \theta k_2 A A \overline{T^2}, 0, -\frac{v}{\sigma \tau_1} A \overline{C_1^2} + \frac{k_2 k_T}{2\sigma} B(C_1) A \overline{T^2}, -k_2 A \overline{T^2} \Bigg], \\ R(z) &= \begin{bmatrix} 0 & E & 0 & 0 & 0 & 0 \\ 0 & 0 & E & 0 & 0 & 0 \\ A_{31} & A_{32} & A_{33} & -A_{34} & -A_{35} & -A_{36} \\ 0 & 0 & 0 & E & 0 \\ A_{51} & A_{52} & A_{53} & A_{54} & A_{55} & -A_{56} \\ A_{61} & A_{62} & 0 & -A_{64} & 0 & A_{66} \end{bmatrix}, \\ A_{32} &= \frac{1}{\lambda_1^2} A \Bigg[c_v - \frac{\theta k_1 \lambda_1}{2} B(T) \Bigg], \\ A_{33} &= \frac{1}{\lambda_1^2} \Big[c_v (\lambda_1 + \lambda_2) A - E - \frac{\theta k_1 \lambda_1 \lambda_2}{2} A B(T) \Bigg], \\ A_{35} &= \mu A, \ A_{36} &= \frac{\theta}{\lambda_1} A \Bigg[E + \frac{\lambda_0 \lambda_1}{2} A \Bigg], \\ A_{51} &= \frac{k}{2\sigma \tau_1 \lambda_1} \Big[B(C_1) + \tau_1 B(C_2) \Big] - \frac{k_1 k_T}{4\sigma \lambda_1} B(C_1) B(T), \\ A_{52} &= \frac{k}{2\sigma \tau_1 \lambda_1} \Big[(\tau_1 + \lambda_2) B(C_1) + \tau_1 \lambda_2 B(C_2) \Big] - \frac{k_1 k_T \lambda_2}{4\sigma \lambda_1} B(C_1) B(T), \\ A_{53} &= \frac{k \lambda_2}{2\sigma \lambda_1} B(C_1), \\ A_{54} &= \frac{1}{\sigma \tau_1} [DA - \frac{v \tau_1}{2} B(C_2)] + \frac{v k_T}{4\sigma} B(C_1) B(T), \end{split}$$

$$\begin{split} A_{55} &= \frac{1}{\sigma \tau_1} [\tau_2 DA - \sigma E] - \frac{v}{2\sigma} B(C_1), \\ A_{56} &= \frac{k_T}{2\sigma \tau_1} \Big[B(C_1) + \tau_1 B(C_2) \Big] + \frac{\lambda_0 k_T}{2\sigma} B(C_1) A, \\ A_{61} &= \frac{k_1}{2\lambda_1} B(T), \ A_{62} &= \frac{k_1 \lambda_2}{2\lambda_1} B(T), \ A_{64} &= \frac{v}{2} B(T), \ A_{65} &= \lambda_0 A. \end{split}$$

Система (21) является жесткой и требует использования специальных численных методов для ее решения. Рассмотрим три метода решения этой системы – явный адаптивный трехстадийный метод [9] и диагональные неявные FSAL-методы Рунге–Кутта 2-го и 4-го порядков [10]. Решения систем нелинейных уравнений при этом будем проводить методом простой итерации. Заметим, что все эти методы не требуют вычисления якобиана системы уравнений.

Явный адаптивный трехстадийный метод [9] решения системы (21) опишем следующим образом (здесь все операции над векторами покомпонентные).

Введем обозначения

$$\begin{split} f(z) &= R(z)z + F(z) \,, \\ k_1 &= f(z_n), \, k_i = f(z_n + \tau[(\beta - \alpha)k_1 + \alpha k_{i-1}]) \,, \\ v_1 &= k_1, \, v_i = \frac{k_i - k_{i-1}}{\beta \alpha^{i-2}} \,. \end{split}$$

Пусть $\mathbb{Z}_1 = \frac{v_3}{v_2} = \frac{k_3 - k_2}{\alpha(k_2 - k_1)}$ — покоординатная оценка наибольшего собственного значения якобиана системы, тогда значения вектор-функции на следующем шаге по времени равно

е по времени равно
$$z_{n+1} = z_n + \tau(\nu_1 + c_2 \nu_2), \ c_2 = \begin{cases} 1/2 + \mathbb{Z}_1/6, |\mathbb{Z}_1| \leq 1.6, \\ -\mathbb{Z}_1^{-1} - \mathbb{Z}_1^{-2}, \mathbb{Z}_1 < -1.6, \\ 1.23\mathbb{Z}_1^{-1}, \quad \mathbb{Z}_1 > 1.6. \end{cases}$$

После каждого шага процедуры осуществляется коррекция параметров схемы:

$$\alpha = \min(\max |\mathbb{Z}_1|^{-1}, 1/3), \beta = 1 - \alpha.$$

FSAL-SDIRK схема Рунге–Кутта 2-го порядка [10] может быть описана следующим образом:

$$\begin{split} z_{n+1} &= z_n + \tau(\frac{1}{2}(1-\gamma)(k_1+k_2) + \gamma k_3), \ \gamma = 1 - \sqrt{2}/2 \,, \\ k_1 &= f(z_n) \,, \\ k_2 &= f(z_n + \tau \gamma(k_1+k_2)) \,, \\ k_3 &= f(z_n + \tau(\frac{1}{2}(1-\gamma)(k_1+k_2) + \gamma k_3)). \end{split}$$

Аналогично, для FSAL-SDIRK схемы 4-го порядка

$$\begin{split} z_{n+1} &= z_n + \tau (\frac{7}{90}k_1 + \frac{2}{15}k_2 + \frac{16}{45}k_3 + \frac{16}{45}k_4 - \frac{31}{180}k_5 + \frac{1}{4}k_6) \,, \\ k_1 &= f(z_n) \,, \\ k_2 &= f(z_n + \tau (\frac{1}{4}k_1 + \frac{1}{4}k_2)) \,, \\ k_3 &= f(z_n + \tau (\frac{1}{16}k_1 - \frac{1}{16}k_2 + \frac{1}{4}k_3)) \,, \\ k_4 &= f(z_n + \tau (\frac{1}{16}k_1 - \frac{1}{16}k_2 + \frac{1}{2}k_3 + \frac{1}{4}k_4)) \,, \\ k_5 &= f(z_n + \tau (-\frac{9}{62}k_1 - \frac{77}{124}k_2 + \frac{143}{123}k_3 + \frac{45}{124}k_4 + \frac{1}{4}k_5)) \,, \\ k_6 &= f(z_n + \tau (\frac{7}{90}k_1 + \frac{2}{15}k_2 + \frac{16}{45}k_3 + \frac{16}{45}k_4 - \frac{31}{180}k_5 + \frac{1}{4}k_6)) \,. \end{split}$$

Среди методов, требующих вычисления якобиана системы, выделим класс методов Розенброка [8]. Каждых шаг этих методов требует решения одной или нескольких систем линейных алгебраических уравнений.

Был реализован L-устойчивый 2-го порядка (2, 2) — метод [11], алгоритм исполнения шага которого можно записать в виде

$$z_{n+1} = z_n + ak_1 + (1 - a)k_2,$$

$$D_n k_1 = \tau f(z_n), D_n k_2 = \tau f(z_n + ak_1),$$

$$D_n = I - a\tau J_n, J_n = \frac{\partial \vec{f}}{\partial \vec{z}}\Big|_{z_n}, a = 1 - \frac{\sqrt{2}}{2}.$$
(22)

Поскольку якобиан правой части системы (21) является разреженной матрицей большой размерности с большим коэффициентом заполненности, уравнения (22) целесообразно решать итерационными методами, причем из-за сложности его вида стоит использовать те методы, которые требуют в процессе решения только вычисления произведения матрицы системы на некоторый вектор. В качестве такого метода был выбран метод BiCGSTAB [12].

Тестирование численных алгоритмов на одномерных задачах

В качестве тестовой одномерной задачи рассматривалась задача консолидации грунтового массива, насыщенного солевым раствором, и размещенного на непроницаемой основе. Задача решалась на сетке размерностью 100 точек, конечное время моделирования – 10 суток, шаг по времени – 0.056 суток.

Принимались следующие значения параметров задач:

- краевые условия:

$$\tilde{C} = 350 \varepsilon / \pi$$
, $\tilde{T} = 20C$, $\tilde{H} = 10 M$;

- характеристики грунтового массива:

$$l = 24M$$
, $\sigma = 0.655$, $k = 0.001M/\partial o \delta a$, $c_v = 0.03232$;

- коэффициенты диффузии и осмоса:

$$D=0.02\,\mathrm{m}^2/\,\mathrm{сутки},\, v=2.5*10^{-5}\,\mathrm{m}^5/\mathrm{кг}^*\,\mathrm{сутки},\, k_{\scriptscriptstyle T}=10^{-5}\mathrm{m}^2/\,\mathrm{град}^*\mathrm{сутки};$$

- термические коэффициенты:

$$C_T = 2*10^6$$
дж/кг*м³ * град, $C_0 = 0.8*10^3$ дж/кг*град,

 $\rho = 1100 \,\mathrm{kr/m^3}, \, \lambda = 69120 \,\mathrm{дж/m^* град^*} \,\mathrm{сутки};$

- коэффициенты релаксации:

$$\lambda_1 = 0.001, \ \lambda_2 = 0.0005, \ \tau_1 = 0.001, \ \tau_2 = 0.0005.$$

Полученные решения сравнивались с наиболее точным решением, которое получается методом Рунге–Кутта четвертого порядка. Остальные рассматриваемые методы имеют второй порядок точности.

Данные относительно отличий в решениях и времени работы алгоритмов приведены в следующей таблице.

ТАБЛИЦА

Алгоритм	Явный адаптив- ный метод	Метод Рунге-Кугта 2-го порядка	Метод Рунге-Кутта 4-го порядка	Метод Розенброка 2-го порядка
Время работы алгоритма, с	99	210	541	55
Сведенная погрешность, %	0.04	0.02		0.08
Максимальная относительная погрешность при $f > 0.01$, %	27	20		38

Так как решения, найденные всеми четырьмя рассматриваемыми схемами, имеют пренебрежимые расхождения, в дальнейшем алгоритмы сравнивались исключительно с точки зрения времени решения. В частности, метод Розенброка оказался самым быстрым из рассматриваемых.

Результаты решения трехмерных задач

Рассмотрим задачу фильтрационной консолидации слоя глинистого грунта под флютбетом со шпунтом. Для двухмерного случая задача поставлена в [2]. Рассматривался трехмерный вариант задачи, полученный продолжением двухмерной по третьей координате. Область моделирования изображена на рис. 1, а значения параметров были взяты аналогично вышеописанной одномерной задаче.

Процесс консолидации моделировался для временного периода в 3600 суток при дискретизации области сетками размером 8000 (20х20х20), 64000 (40х40х40) и 216000 (60х60х60) ячеек. Шаг по времени выбирался наибольшим, при котором сходились процессы простой итерации. Независимо от размерности задачи, минимальное его значение составило 0.002 суток, или же ~3 мин.

Результаты расчетов показали, что использование явной адаптивной схемы для трехмерных задач является нецелесообразным в связи с ее низким быстролействием.

Линии уровня функции избыточных напоров изображены на рис. 2, а, значения функции избыточных напоров на разрезе z=0.5 – на рис. 2, б (значение функции здесь отображается высотой).

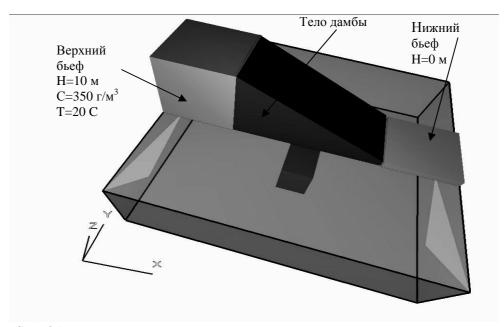


РИС. 1. Область моделирования

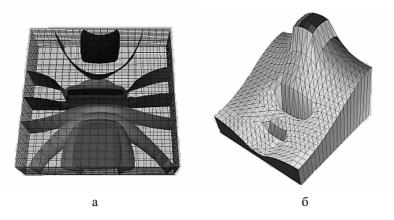


РИС. 2. Функция избыточных напоров: а – линии уровня; б – значения функции при z=0.5

Заключение. Анализ результатов вычислительных экспериментов показывает, что рассматриваемая трехмерная задача фильтрационной консолидации является достаточно сложной, и для эффективных расчетов требует использования специальных алгоритмов.

Тестирование разных методов решения дискретизированной задачи показывает, что методы типа Розенброка являются оптимальными с точки зрения быстродействия, давая при этом достаточную точность решений.

В.О. Богаєнко

АЛГОРИТМИ РОЗВ'ЯЗАННЯ ТРИВИМІРНИХ РЕЛАКСАЦІЙНИХ ЗАДАЧ ФІЛЬТРАЦІЙНОЇ КОНСОЛІДАЦІЇ З УРАХУВАННЯМ ОСМОТИЧНИХ ПРОЦЕСІВ

Розглядається задача моделювання консолідаційних процесів з урахуванням засоленості вод, температурного режиму та осмотичних процесів. Пропонується розширення моделі на тривимірний випадок. Наводяться дані експериментального аналізу застосовності різних спеціальних чисельних методів до розв'язання задач щодо цієї моделі.

V.O. Bohaienko

ALGORITHMS FOR SOLVING THREE-DIMENSIONAL RELAXATIONAL PROBLEMS OF FILTRATIONAL CONSOLIDATION SUBJECT TO OSMOTIC PROCESSES

A problem of consolidation processes modeling subject to salinity of water, temperature conditions, and osmotic processes is considered. Extension of the model to three-dimensional case is proposed. Analysis of applicability to solving problems regarding this model of ad hoc numerical methods based on experimental data is given.

- 1. *Бомба А.В., Булавацький В.М., Скопецький В.В.* Нелінійні математичні моделі процесів геогідродинаміки. К.: Наук. думка, 2007. 291 с.
- 2. *Власюк А.П., Мартинюк П.М.* Математичне моделювання консолідації грунтів в процесі фільтрації сольових розчинів. Рівне: Вид-во УДУВГП, 2004. 211 с.
- 3. *Лыков А.В.*, *Борковский Б.М.* Законы переноса в неньютоновских жидкостях // Тепло- и массообмен в неньютоновских жидкостях. М.: Энергия, 1968. С. 5–14.
- 4. Полубаринова-Кочина П.Я. Теория движения грунтовых вод. М.: Наука, 1977. 664 с.
- 5. *Флорин В.А.* Основы механики грунтов: в 2-х т. Л.: М.: Госстройиздат, 1961. 2. 544 с.
- 6. *Ваганова Н.А.* Моделирование процессов теплообмена во влажном грунте с учетом конвекции // Проблемы теоретической и прикладной математики: Тр. 39-й Всерос. молодежной конф. Екатеринбург: УрО РАН, 2008. С. 107–113.
- 7. *Лебедев В.И.* Уравнения и сходимость дифференциально-разностного метода (метода прямых) // Вестн. МГУ. Сер. физ.-мат. наук. 1965. № 10. С. 47–58.
- 8. *Rosenbrock H.H.* Some general implicit processes for the numerical solution of differential equations. // Comp. J. 1963. **5**, N 4. P. 329–331.
- 9. *Скворцов Л.М.* Явные адаптивные методы численного решения жестких систем // Математическое моделирование. 2000. –12, № 12. С. 97–101.
- 10. *Скворцов Л.М.* Диагонально неявные FSAL-методы Рунге–Кутта для жестких и дифференциально-алгебраических систем // Математическое моделирование. 2002. **14**, № 2. C. 4–17.
- 11. *Новиков А.Е., Новиков Е.А.* Максимальний порядок точности (М,2)-методов решения жестких систем // Изв. Челябинского научного центра. 2007. Вып. 4(38). С. 3–7.
- 12. Yousef Saad Iterative methods for sparse linear systems, 2 edition. Society for Industrial and Applied Mathematics, 2003. 528 p.

Получено 09.02.2010

Об авторе:

Богаенко Всеволод Александрович,

кандидат технических наук, научный сотрудник Института кибернетики имени В.М. Глушкова НАН Украины.