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PaccMoTpeHb! mpoGiaeMbl MOZICTMPOBAHUS U MACHTH(DUKALMK
CIIOKHBIX JIMHAMHYECKHX cucTeM. J[is 3aay CTPYKTYpHO-HapaMeTpH4ecKoi
uieHTHGUKAIME HAa OCHOBE ONMCAHMS B BHJAC OECKOHCUHBIX Da3JIOKCHUN
YCTaHOBJICHBI W HCCIIEJIOBAHbI YCIIOBHS, NPH KOTOPBIX 3TH 33/Iaud SIBJISIOTCS
KOPPEKTHO ITOCTABJICHHBIMH, a KOTJ[d UX PELICHHS CTAHOBSTCS HEYCTONYUBBIMU
U, CIEJOBATEIbHO, IPAKTUYECKH HENPUTOMHBIMU. [loNydyeHHbIE pe3yabTaThl
SIBIISIIOTCA (PYHIAMEHTAIBHBIMH M JAI0T Oojiee TIyOOKoe TOHHMaHHe Mpolecca
UACHTU(PUKALIUIH.

Knrouesvie cnosa: cucreMHast nieHTUGHUKALUS, HEKOPPEKTHO-
MIOCTaBJICHHAs 3a]ia4ya, KOHEYHO-4aCTOTHAs MACHTHU(UKAILMSA, UICHTUDUKALMS
Ha OCHOBE BBIICICHUS OPTOTOHAIBHOrO moampocTtpaHctBa  (4SID),
peryisipu3anus.

PosrisiHyro mpoGiiemu  MozeiOBaHHS Ta  imeHTHiKari
CKIIaJHUX JUHAMI4HUX cucTeM. /[l 3amad  CTPYKTYpHO-HapaMeTpUYHOL
inenTudikamii Ha OCHOBI OMWCY Yy BHUIVISAAI HECKIHYCHHHX pPO3KIAIiB
BCTAHOBJIICHO Ta JOCII/PKEHO YMOBH, 32 SKHX @i 3a7adi € KOPEKTHO
MIOCTABJICHUMH, a KOJIM iX PO3B’SI3KM CTalOTh HECTIMKUMH i, OTXKE, IPAKTHYHO
HenpuatHumu. OTpuMaHi pe3ynbTatd € (pyHAaMEHTAIBHUMH 1 JAI0Th OLIbII
riubOKe PO3yMiHHSI IpoLeCy iaeHThudiKarii.

Kniouosi cnosa: cucremna ifneHTU(]IKALis, HEKOPEKTHO-
BH3HAYCHA 3a/1a4a, KiHI[EBO-4aCTOTHA ieHTU(]iKallisL, i1eHTU]iKaIlisi HA OCHOBI
BUJIIJICHHSI OPTOrOHAIIBHOTO mifnpocTopy (4SID), perymsipusartis.

INTRODUCTION

System identification problems belong to a class of inverse problems which
have the feature that under certain conditions its solutions become unstable i.e.
sensitive to the errors in input data. Especially it takes place in multidimensional
cases when it is necessary to assume a model set which adequately represents the
original system, then select a model order and find other parameters using only
general information about unknown plant. Processes in such system may be so
complex that on the base of fundamental laws and theoretical results it is often
impossible to define even the model set which includes a model that completely
describes the system that generates data. Also it is supposed that there is a
causation between finite input and output of a plant. The only possible way in such
cases is to use different infinite-dimensional expansion as model set [1, 2].
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Computational mathematic methods serve as a foundation of such approach (e.g.
Galerkin method and other iterational methods, methods based on Green function
or impulse response for system with disturbed or lumped parameters [3—5]).

Example of such complicated system is a heating processes in power station.
Fuel supply that affects vapor parameters is considered as an input. Processes of
burning, heating and vaporizing are so complex that it is impossible to describe
them in any other way besides approach proposed above, that is using infinite-
dimensional model which links input (fuel supply) and output (vapor parameters).
In this case input-output map is an impulse response that induces nuclear Hankel
operator or equivalent non-rational transfer function.

The approximation of infinite-dimensional linear system by finite-dimensional
ones is a subject of interest in a mathematical theory. In [2] using output normal
realization the convergence of the finite-dimensional approximation to precise
model was proven and error bounds on the truncated realization were given. These
results are important for model reduction problem, i.e. conversion of the complex
infinite-dimensional description into simple low-dimensional model [6].

In identification problem the reduced model order selection is defined
primarily by the well-posedness, for which it is necessary to satisfy conditions
providing the stability of the solution with respect to errors in the initial data. In
this sense truncated model order will be the main regularization parameter which
means that the dimension of rational approximation should be in agreement with
the errors in available data. Hence regularization procedure should be incorporated
in the existing methods of identification allowing to find the stable solution and to
extend model order when errors tend to zero.

This paper shows how this problem may be solved correctly with selection of
highest model order admissible by stability conditions using two popular
identification methods. Besides numerous computational experiments that were
conducted allowed us to clarify a cause of ill-posedness which is an essential to
identification problem. Fundamental properties of the regularized solutions are
established irrespectively to identification method used for plant that generated
output data.

Systems with single input and single output (SISO) are considered because
even in this case nontrivial results were revealed.

PROBLEM SETTING

For infinite-dimensional nuclear type linear SISO systems model set can be
written as

X=Ax+bu+& y=cz+m, (1)

where A 1is a linear operator mapping between infinite-dimensional linear vector
spaces, b is a linear operator mapping one-dimensional space into infinite-
dimensional one, ¢ is a projecting operator. Under suitable assumptions they lead
to existence of a non-rational transfer function G(s)=c(s/ — A)b. Values & and n
denote unknown perturbation in input and noise in output that may be present in
real system.

Description (1) be also appropriate for multi-dimensional case when system
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has finite but large and unknown dimension. In this case A is a matrix, b,c are
vectors and transfer function is a rational. Such system is also a nuclear type if it
eigenvalues belong to left half-plane.

Let description (1) be proper for unknown real system, i.e. is a nuclear type
and (1) includes true model. It is required to find the finite-dimensional matrix A4
and vectors b,c using experimental data (y(¢), u(¢z)) that would provide a rational
approximation of the real system described by (1) so that difference between
system output and model output would be either in accordance with errors &, or
defined by stability condition of the solution. In other words it means to solve
identification problem correctly. For finite multidimensional case it means to
construct the model with significantly less dimension than dimension of the real
system. Here is a full analogy with so-called model reduction problem [6]. In this
case rational approximation (1) can be represented as

X=A,x+bu,y= c,fx, ()

where 4, is a matrix nxn, b, is a column-vector, ¢! is a row-vector (T is a

transposition).
FINITE-FREQUENCY IDENTIFICATION WITH REGULARIZATION

Model reconstruction using Frequency method of identification is realized on
frequency domain parameters, extracted from experimentally measured output
when input is excited by the harmonic test signal. The classical frequency approach
has a long history and here we don’t give the review of these methods because
readers can find it for example in the paper [7]. We note that in recent years the
methods were significantly developed by Alexandrov and Orlov, see [7-11].

If (2) will be written in the form of Jordan realization it is easy to get the
following input-output relation

0 1
y(t) = qu-[e_kq(t_e)u(e)de +
g=1 0

3)

p 0
£ Y e )[f,;’-cosﬁp(z—e)+f;-sinﬁp(z—e) 14(0)db.
p=10

For simplicity sake here it is accepted that initial state under ¢, is zero:
to =0; eigenvalue multiplicity is missing; O is a number of real and P is a

number of complex-valued eigenvalues with A, 20, o), 2 0. Besides

C C C S S

Ip = Cnpbup + Cupbip p=1P"’ )
S _ C LS S 1.C ’

Ip = Cnpbup — Cpbup s

Cng and by, are components of the vectors b, and ¢, for real eigenvalues and
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czp , np , b;p , bjp are components of these vectors corresponding Jordan block

—a, By
—Bp —op|

From equations (4) it is possible to select different canonical form. For

example, assuming b,, =1, b;p =1, b,fp =0 we receive the control canonical

realization and for c,, =1, czp=1, czp =0 we have observable canonical
realization. By analogy balanced realization may also be obtained.
In frequency method the system and model inputs are usually exited by

polyharmonic signal with K sinusoids of different frequencies ®; and amplitudes
Uy :
K
u(f)= Y usinat, 120, (3)
k=1
For sample data the regression equation is derived if substitute (5) in (3) and
integrate. As result we obtain

7»
(t) Zuk Z 2 t+
P
Zl[(Y3fp+Y2fp)sm[3pt+(y2fp y3fp)cos[3p]e +
p
_ (6)
0 A,g
+ qu—q"'Z(Ylfp"‘pr) sin gt +
L= 17‘q+°’k p=1
2 0r8y
" Zz—JFZ(Yzfp Y3fp)coswkt ,
K 1}L +(Dk p=l1

where Q+2P=n,

Yl:yl(ap’Bp,ook)— : Ay, Ap )
p+(ook+[3p)2 a +(°°k BP)Z
o +B, (Dk Bp
a ap
Y3=Y3(ap’Bp’wk)=0(12n+(00k+l3p)2_0‘12D+(0)k_13p)2,
o +B, o —Bp

Y4 =Y4(ap:Bp’®k) =

0c12D+(ook+[3p)2 _ocf)+(03k—[3p)2 '

When Q,P,%,,a are known formula (6) becomes linear regression which can

p-Bp
be used for g, , f, [f , | ; determination. In this regard three stages of identification
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are proposed. At first maximal admissible by stability condition Q* and P* are

defined. In other words a solution of the identification problem for Q* and P’
should be weakly sensitive to errors in available data and further increase of order
n will lead to scattering of the estimated parameters. Then QO and P may be
considered as a regularization parameters. Here we have analogy with function
recovery problem which is given in the form of approximately defined coefficients
of Fourier expansion. At the second stage eigenvalues (i.e. A, ,0,,p,) are

calculated for known model order. At the final stage parameters g, , f, [f , [ [f are

estimated from equations (4) using linear regression and then coefficients

Bpg>bp>DnpsCngCnp>Cnp that correspond to Jordan realization in suitable canonical

form are founded.
For finding solution on the first and second stages it is proposed to use the
well known equations of the frequency identification method [7]

V(jor) — (@ + YW (og) =0,k =1, K, (7)
where j= \/__1’ G(joy) = M and
W(joy)

. . -1 . ) .
V(jor) = (o) vy +(ep)" v, g+t jopy +g,

W( jop)=(jog)" w, + (jcok)n_lwn_l +...+ joyw; +wy are analytical expressions
for numerator and denominator of transfer function represented as frequency
response, @, + j¥) is a value of transfer function on imaginary axis which may

be evaluated from measured in experiment output y(¢) according to[7, 9]

T T -
D, (1) = uij y(t)sin ogtdt , Wy (1) = Mij y(t)cos wytdt , k=1,K . (8)
k 0 k 0

For large but finite t ®; and ¥} are determined with errors. If 1> @

and ¥, tend to precise values when certain requirements to the choice of w; are

realized [7, 9]. Besides correct identification on the base (7) is achieved when

K >n. Then using corresponding part equations of (7) parameters v; (i=0,n—1)

may be expressed through w; (i =0,_n) and after that we eliminate v; from
remaining equations. This procedure is correct because the relevant linear system
equations has a Vandermonde determinant, composed from different w; only, i.e.

it is a nonsingular and may be computed exactly. Details of this procedure one can
find in paper [12]. Here we write the final result namely the linear equation of the

system with respect to vector w = (wp, W, ...,W,):

Hw=g, €))
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where matrix A and g on the right side have a complicated dependence on @,
Y., o, that is H =H(®;, ¥, 0,), g=g(D, VY, o;). Their expressions are
given in [12]. Large finite t provides approximate ®; , ¥, . As a result system (9)

has given approximate matrix A and right hand side of equation. Nuclear type
systems generate the data which lead to ill-conditionality of the matrix H even for
not large #, i.e. the problem (9) becomes ill-posed for multidimensional model. It
was established in [12] that solution of (9) will be stable if

k(H)[gc + ”—gj <1, (10)
T

where k(H) is a matrix H condition number; € is a boundary (or variance) for

noise and perturbation; ¢, defines level of computational error. Detailed

researches of the solution stability problem were realized by means of numerical
experiments. Wide class of systems with different structure parameters and noise
have generated data for identification which thereupon were utilized in algorithms

that estimates @ s ¥ and matrix H . Model order n and therefore a dimension of
a system equation (9) was significant parameter. So matrix H and vector g were
computed for different n, i.e. we formed set of H, and g, for different ».

Condition number of the matrices obtained in numerical experiments is evaluated
by SVD decomposition

H,=UzVI, (11)

where U,,, V,, are orthogonal matrices and X, is a diagonal matrix with the
singular values in non-increasing order on the diagonal. Then matrix H, condition

number in spectral norm || . ||2 is defined by expression

o (H")

KZ(Hn)= PR
0,(H")

(12)

where o is the first and o, is the last singular values. Typical for nuclear type
system dependence «,(H,) from approximate model order » illustrates Fig. 1.
Increase of the model dimension on unit leads approximately to two order «,(H,,)
enlargement.

Now we address the stability problem that is how to determine the regularized
solution of the identification problem. As it was said before model order n is
regarded as regularization parameter. However it is more convenient to use
condition number for numerical modeling of identification process instead n since
condition number is roughly linked with n for each concrete system. In this case
condition number may represent the class of system even with different » .

Estimations of ® and ¥ depend on observation interval t. Obviously this
dependence become tangible when t is changed exponentially. So it is appropriate
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to choose discrete time t; as 1, = 10% 1o where Tt is initial proper observation
interval.

N=0+2P

Fig. 1. Condition number values for approximate models of different order

We exploit small interval [‘rk,rk + Ak] near each t; for data collection and

estimations of ® and W . We use set of matrices H obtained from these data for
stability analysis. We can judge about appearing unstable solution by the scattering
of eigenvalues obtained from equation W(s)=0 with coefficients w; (i =1,_n)
calculated according to system (9). Fig. 2 summarizes the results of multiple
numerical experiments for data generating systems with different structures and
parameters. On plane of two parameters k,(/H) and t are shown the stability
domain A, range C where all systems were unstable and transition domain B
where part of the systems provide the stable solution and another are unstable.
Further 1 increase leads to curves merging and after that joint curve tend to
saturation that is explained by dominant influence of computational errors. As a
result even for precise @, ¥ models with order Q+2P>11 lie in unstable
domain. For models from transition domain the checking test on stability is
required.

°
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Fig. 2. Solution stability domains for frequency identification
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REGULARIZED SUBSPACE (4SID) IDENTIFICATION METHOD

To build a finite-dimensional model of a plant with a modification of the 4SID
method difference approximation of system (1) was selected as a model set. This
model set may be written as

Xy = Ax, +buy, v =clx, (13)

where A is a matrix axa, b is a vector ax1, el is a vector Ixo, o IS a

model dimension, discretization At is fitted so that lim Az =0, i.e. description
oL—>0

(13) should in limit lead to result coinciding with continuous approximation.
Subspace identification is a well developed method and description of it may
be found for example in [13, 14]. Here we consider simplified version. Let input

u; be exited by square wave-form oscillator alternating with relaxation intervals

u;,teSy;
0,1€85i4

U, = , i=0,1,2,...,N, (14)

where S, S,, ... are exiting intervals, Sj, S5, ... are relaxation intervals. All Sy,
(i=0,1, ..., N) have equal length M and duration of S,; (i=0,1, ..., N) may
be varied. Hankel matrix Y is formed from M  measurements

V2i+11> Y2it1.25 --+» Y2i+1,m ON €ach relaxation interval

Yir o Y31 .- VaN+l1l

Y2 1 -+ V2N+12
Y=| . . . .

YiM YVim - V2N+ILM

By analogy we form matrix X from vectors x,;,; relevant to origin of each

relaxation interval

X1 X31 .- XN+

X2 X31 ... X2N412
X=| . . . . R

XM X¥3M -+ X2N+LM

where x4, k= La isa component of vector x,;,;. Due to equations (13) and

specifics of the matrix X, Y the following matrix equation may be written
[13, 14]

Y =Ty X, (15)
CT
T4
where [, =" . is an observability matrix.
T aM
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According to realization theory if Y =YY, is any given full-rank

factorization of the Hankel matrix, then Y] is the observability matrix and Y, is the

matrix of initial state on the relaxation intervals for some state-space realization.
Optimal way for realization of such factorization is to use SVD decomposition. Let
the SVD of Y be given by

Yy=0317T, (16)

where O and V' are orthogonal matrices and X is a diagonal matrix with singular
values in non-increasing order on the diagonal. If the data generating system is n
order, then in the ideal case (all yﬁf 1 are precisely given) Y is of rank n, so that
only the n first singular values are non-zero provided that ao>n, M >n, N >n.
But in reality instead of precise ¥ we would have a matrix ¥ =Y + Z , where Y is
a true matrix and Z is a matrix produced by perturbation of input and output noise.
Then all singular values of matrix X will be positive. For multidimensional or
infinite-dimensional systems condition number is evaluated as a ratio of singular
values that grows exponentially when o incremented by one. So SVD
decomposition (16) we write as follows

Y=0,2VI +0.2,V], (17)
2, 0
where 0=(0, 0,), V=0,V,), 2= 0o s |
.

In the framework of statistical approach for finite-dimensional system the first
term corresponds to a “signal” and the second is a “noise”. It is clear that X, =0 in

the absence of errors. So the dimension of X, defines first of all the system order

n. In our case due to ill-conditioning of the matrix Y, (first term) for large (or

even for not large) n we consider partition (17) as regularization procedure. First
term with maximal »n defines the maximum order of approximate model when
identification still gives the stable solution. Unlike to statistical approach the model

order estimation depends on value HI? -Y “ When HI? -Y H — 0, then following

tendency holds »n —>n", where n is an order of a model that corresponds to

deterministic case. Value 7 is entirely defined by inevitable computational errors.
If partition in (17) is made correctly, which means the order of approximate
model satisfy the stability condition, the next step is to find the model parameters.

By setting I,,_; =, the matrix 4 for some realization can be obtained from the

matrix equation

Div - A=Top41s (18)
where 1./, is a submatrix derived from I'y,,; crossing out the first row and

.5, is a submatrix derived from I, crossing out the last row.
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In non-singular case system in (18) is overdetermined and a least-squares or a
total least-squares methods to solve the system with respect to 4 can be used. After
obtaining matrix 4 from (18) we find its eigenvalues that allows to write matrix
A in Jordan realization. For canonical controllable realization vector b is given
and only vector ¢ should be found. When canonical observable realization is
preferable, then vector b should be found with given vector ¢ . With given 4 and
b from first equation in (13) and (14) it is easy to calculate x; in each point ¢ of
the observation interval. Then the second equation in (13) allows to find vector ¢
from overdetermined linear system of equations with y, measured in experiment
for the same input. Here we remark that problem estimation of ¢ is more stable in
comparison with determination of the matrix 4 eigenvalues. It means that well-
posedness of the identification problem under consideration is completely defined
by the splitting procedure (17) that is choise of term QnZnVnT . Multiple numerical

experiments show that condition number depends on » in just the same way as it
reports in Fig. 1.
Stability property in dependence on n was studied by numerical modeling.

Two main parameters define the solution stability, namely, 8=HI7 -Y “ and
condition number «, for spectral norm of the matrix QnZnVnT , le.

o . . .
Ky (QnZnVnT) = 0—1 where o is the first and o, is the last singular values of the
n

matrix X, . Instead of regularization parameter n we choose k, on the same
reason that was pointed out for frequency method. So the plane of these two
parameters & and Kk, was used for demonstration of stability result obtained in

multiple experiments with different system structures and parameters generating
the data.

0.05% 0.50% LO0% 5.00% c 10.00%
Fig. 3. Solution stability domains for subspace identification method
Domain 4 in Fig. 3 conforms to stability and C is unstable region. Between

them transition zone B is located where part of the identified models are stable
and the other are unstable. Here as in Fig. 2 the additional stability test is required
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to use, for example set of data obtained by randomization. Fig. 2 and
Fig. 3 can be used for model construction of reduced order or maximal order
assumed by stability condition.

CONCLUSIONS

Identification problems of infinite or multidimensional systems may be fully
treated as essentially ill-posed. Because of using only measured in experiment
inaccurate data in many cases we not only look for a solution of the operator
equation but also an operator itself. Hence the problem arises how to write the
model set that includes true model of a plant. In such situation we propose in
capacity of model set to represent it in the form of infinite expansion and to find
finite approximation consistent with errors in available data using for this
regularization. In other words the identification problem in such setting is always
ill-posed. It is shown that this property is fundamental regardless what kind of
method is applied.

It should be pointed out that approximate model obtained in identification is
similar to real system with respect to output only. Moreover model parameters
(eigenvalues and others) can essentially differ from the same parameters of the real
system. For example, in most experiments each model eigenvalue represent whole
cluster of system eigenvalues, i.e. is determined as averaged estimation.

It is also worse mentioning also about ill-posed identification of the finite-
dimentional systems. All systems generating data with order corresponding to
domain C in Fig, 2 and Fig. 3 lead to ill-posed identification. For such systems
only approximate model of less order than at original system may be reconstructed.

1. Funrmann P.A. Linear Systems and Operators in Hilbert Space. McGraw-Hill, New York.
1981. 476 p.

2. Glower K., Curtain R.F., Partington J.R. Realization and Approximation of Linear Infinite-
Dimensional Systems with Error Bounds. SIAM Journal Control and Optimization, 1988,
vol. 26, no. 4, pp. 863-897.

3. Gubarev V.F. Problem-oriented identification and control in the system with distributed
parameters. Problems of Control and Informaticc 2000, no. 3, pp. 26-37
(in Russian).

4. Gubarev V.F. Rational approximation of the system with distributed parameters. Cybernetic
and system analysis, 2008, no. 2, pp. 99-116 (in Russian).

5. Gubarev V., Zhukov O. Rational Approximation and Identification of Distributed Parameter
Systems. Proceedings of the 17-th World Congress IFAC. July 6—11 2008. Seoul, Korea, pp.
6452-6457 (in Russian).

6. Antoulas A.C., Sorensen D.C., Gugercin S. A survey of model reduction methods for large-
scale systems. Contemporary mathematic, 2001, 280, pp. 193-219.

7. Alexsandrov A.G. Method of frequency parameters. Automatica and Telemechanick. 1988,
50, no. 12, pp. 3-5 (in Russian).

8. Alexsandrov A.G. Finite-frequency identification: multidimensional object. International
conference on control problem. Proc. of the conf. Moscow: Institute of control problem RAS,
1999, no. 1, pp. 15-28 (in Russian).

9. Orlov YuF. Frequency parameters identification under parallel tests. Automatica and
Telemechanick, 2007, 68, no. 1, pp. 2040 (in Russian).

10. Gubarev V.F., Melnichuk S.V. Identification of multidimensional system using steady-state
parameters. Problems of Control and Informatic, 2012, no. 5, pp. 2643 (in Russian).

Iomyueno 26.06.2014

© V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014
ISSN 0452-9910. KuGepHeTnka u BbIYMc/I. TexHuKa. 2014. Boin. 177 15



