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Рассмотрены проблемы моделирования и идентификации 
сложных динамических систем. Для задач структурно-параметрической 
идентификации на основе описания в виде бесконечных разложений 
установлены и исследованы условия, при которых эти задачи являются 
корректно поставленными, а когда их решения становятся неустойчивыми 
и, следовательно, практически непригодными. Полученные результаты 
являются фундаментальными и дают более глубокое понимание процесса 
идентификации. 

Ключевые слова: системная идентификация, некорректно-
поставленная задача, конечно-частотная идентификация, идентификация 
на основе выделения ортогонального подпространства (4SID), 
регуляризация. 

Розглянуто проблеми моделювання та ідентифікації 
складних динамічних систем. Для задач структурно-параметричної 
ідентифікації на основі опису у вигляді нескінченних розкладів 
встановлено та досліджено умови, за яких ці задачі є коректно 
поставленими, а коли їх розв’язки стають нестійкими і, отже, практично 
непридатними. Отримані результати є фундаментальними і дають більш 
глибоке розуміння процесу ідентифікації. 

Ключові слова: системна ідентифікація, некоректно-
визначена задача, кінцево-частотна ідентифікація, ідентифікація на основі 
виділення ортогонального підпростору (4SID), регуляризація. 

 
INTRODUCTION 
 

System identification problems belong to a class of inverse problems which 
have the feature that under certain conditions its solutions become unstable i.e. 
sensitive to the errors in input data. Especially it takes place in multidimensional 
cases when it is necessary to assume a model set which adequately represents the 
original system, then select a model order and find other parameters using only 
general information about unknown plant. Processes in such system may be so 
complex that on the base of fundamental laws and theoretical results it is often 
impossible to define even the model set which includes a model that completely 
describes the system that generates data. Also it is supposed that there is a 
causation between finite input and output of a plant. The only possible way in such 
cases is to use different infinite-dimensional expansion as model set [1, 2]. 
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Computational mathematic methods serve as a foundation of such approach (e.g. 
Galerkin method and other iterational methods, methods based on Green function 
or impulse response for system with disturbed or lumped parameters [3–5]). 

Example of such complicated system is a heating processes in power station. 
Fuel supply that affects vapor parameters is considered as an input. Processes of 
burning, heating and vaporizing are so complex that it is impossible to describe 
them in any other way besides approach proposed above, that is using infinite-
dimensional model which links input (fuel supply) and output (vapor parameters). 
In this case input-output map is an impulse response that induces nuclear Hankel 
operator or equivalent non-rational transfer function. 

The approximation of infinite-dimensional linear system by finite-dimensional 
ones is a subject of interest in a mathematical theory. In [2] using output normal 
realization the convergence of the finite-dimensional approximation to precise 
model was proven and error bounds on the truncated realization were given. These 
results are important for model reduction problem, i.e. conversion of the complex 
infinite-dimensional description into simple low-dimensional model [6].  

In identification problem the reduced model order selection is defined 
primarily by the well-posedness, for which it is necessary to satisfy conditions 
providing the stability of the solution with respect to errors in the initial data. In 
this sense  truncated model order will be the main regularization parameter which 
means that the dimension of rational approximation should be in agreement with 
the errors in available data. Hence regularization procedure should be incorporated 
in the existing methods of identification allowing to find the stable solution and to 
extend model order when errors tend to zero. 

This paper shows how this problem may be solved correctly with selection of 
highest model order admissible by stability conditions using two popular 
identification methods. Besides numerous computational experiments that were 
conducted allowed us to clarify a cause of ill-posedness which is an essential to 
identification problem. Fundamental properties of the regularized solutions are 
established irrespectively to identification method used for plant that generated 
output data. 

Systems with single input and single output (SISO) are considered because 
even in this case nontrivial results were revealed. 
 
PROBLEM SETTING 
 

For infinite-dimensional nuclear type linear SISO systems model set can be 
written as 

η+=ξ++= czybuAxx ,& , (1) 

where A  is a linear operator mapping between infinite-dimensional linear vector 
spaces, b  is a linear operator mapping one-dimensional space into infinite-
dimensional one, c  is a projecting operator. Under suitable assumptions they lead 
to existence of a non-rational transfer function bAsIcsG )()( −= . Values ξ  and η  
denote unknown perturbation in input and noise in output that may be present in 
real system. 

Description (1) be also appropriate for multi-dimensional case when system 
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has finite but large and unknown dimension. In this case A  is a matrix, cb,  are 
vectors and transfer function is a rational. Such system is also a nuclear type if it 
eigenvalues belong to left half-plane.  

Let description (1) be proper for unknown real system, i.e. is a nuclear type 
and (1) includes true model. It is required to find the finite-dimensional matrix A  
and vectors cb,  using experimental data ))(),(( tuty  that would provide a rational 
approximation of the real system described by (1) so that difference between 
system output and model output would be either in accordance with errors ηξ,  or 
defined by stability condition of the solution. In other words it means to solve 
identification problem correctly. For finite multidimensional case it means to 
construct the model with significantly less dimension than dimension of the real 
system. Here is a full analogy with so-called model reduction problem [6]. In this 
case rational approximation (1) can be represented as  

,, xcyubxAx T
nnn =+=&  (2) 

where nA  is a matrix nn × , nb  is a column-vector, Tc  is a row-vector (T  is a 
transposition). 
 
FINITE-FREQUENCY IDENTIFICATION WITH REGULARIZATION 
 

Model reconstruction using Frequency method of identification is realized on 
frequency domain parameters, extracted from experimentally measured output 
when input is excited by the harmonic test signal. The classical frequency approach 
has a long history and here we don’t give the review of these methods because 
readers can find it for example in the paper [7]. We note  that in recent years the 
methods were significantly developed by Alexandrov and Orlov, see [7–11]. 

If (2) will be written in the form of Jordan realization it is easy to get the 
following input-output relation 
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For simplicity sake here it is accepted that initial state under 0t  is zero: 
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nqc  and nqb  are components of the vectors nb  and nc  for real eigenvalues and 
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c
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npc , c
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npb  are components of these vectors corresponding Jordan block 
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From equations (4) it is possible to select different canonical form. For 

example, assuming 1=nqb , 1=c
npb , 0=s

npb  we receive the control canonical 

realization and for 1=nqc , 1=c
npc , 0=s

npc  we have observable canonical 

realization. By analogy balanced realization may also be obtained. 
In frequency method the system and model inputs are usually exited by 

polyharmonic signal with K  sinusoids of different frequencies kω  and amplitudes 
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For sample data the regression equation is derived if substitute (5) in (3) and 
integrate. As result we obtain 
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where nPQ =+ 2 , 
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When ppqPQ βαλ ,,,,  are known formula (6) becomes linear regression which can 

be used for qg , c
pf , s

pf  determination. In this regard three stages of identification 
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are proposed. At first maximal admissible by stability condition *Q  and *P  are 

defined. In other words a solution of the identification problem for *Q  and *P  
should be weakly sensitive to errors in available data and further increase of order 
n  will lead to scattering of the estimated parameters. Then Q  and P  may be 
considered as a regularization parameters. Here we have analogy with function 
recovery problem which is given in the form of approximately defined coefficients 
of Fourier expansion. At the second stage eigenvalues (i.e. ppq βαλ ,, ) are 

calculated for known model order. At the final stage parameters qg , c
pf , s

pf  are 

estimated from equations (4) using linear regression and then coefficients 
c
np

s
npnq

c
np

s
npnq cccbbb ,,,,,  that correspond to Jordan realization in suitable canonical 

form  are founded. 
For finding solution on the first and second stages it is proposed to use the 

well known equations of the frequency identification method [7] 
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for numerator and denominator of transfer function represented as frequency 
response, kk jΨ+Φ  is a value of transfer function on imaginary axis which may 
be evaluated from measured in experiment output )(ty  according to [7, 9] 

∫
τ

ω=τΦ
0

sin)(2)( tdtty
u k

k
k , ∫

τ
ω=τΨ

0
cos)(2)( tdtty

u k
k

k , Kk ,1= . (8) 

For large but finite τ  kΦ  and kΨ  are determined with errors. If ∞→τ  kΦ  
and kΨ  tend to precise values when certain requirements to the choice of kω  are 
realized [7, 9]. Besides correct identification on the base (7) is achieved when 

nK ≥ . Then using corresponding part equations of (7) parameters iv  )1,0( −= ni  

may be expressed through iw  ),0( ni =  and after that we eliminate iv  from 
remaining equations. This procedure is correct because the relevant linear system 
equations has a Vandermonde determinant, composed from different kω  only, i.e. 
it is a nonsingular and may be computed exactly. Details of this procedure one can 
find in paper [12]. Here we write the final result namely the linear equation of the 
system with respect to vector ),,,( 10 nwwww K= : 

gHw = , (9) 
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where matrix H  and g  on the right side have a complicated dependence on kΦ , 

kΨ , kω  that is ),,( kkkHH ωΨΦ= , ),,( kkkgg ωΨΦ= . Their expressions are 
given in [12]. Large finite τ  provides approximate kΦ , kΨ . As a result system (9) 
has given approximate matrix H  and right hand side of equation. Nuclear type 
systems generate the data which lead to ill-conditionality of the matrix H  even for 
not large n , i.e. the problem (9) becomes ill-posed for multidimensional model. It 
was established in [12] that solution of (9) will be stable if 

,11)( <







τ
ε+

+εcHk  (10) 

where )(Hk  is a matrix H  condition number; ε  is a boundary (or variance) for 
noise and perturbation; cε  defines level of computational error. Detailed 
researches of the solution stability problem were realized by means of numerical 
experiments. Wide class of systems with different structure parameters and noise 
have generated data for identification which thereupon were utilized in algorithms 
that estimates Φ̂ , Ψ̂  and matrix H . Model order n  and therefore a dimension of 
a system equation (9) was significant parameter. So matrix H  and vector g  were 
computed for different n , i.e. we formed set of nH  and ng  for different n . 
Condition number of the matrices obtained in numerical experiments is evaluated 
by SVD decomposition 

,T
nnnn VUH Σ=  (11) 

where nU , nV  are orthogonal matrices and nΣ  is a diagonal matrix with the 
singular values in non-increasing order on the diagonal. Then matrix nH  condition 

number in spectral norm 2⋅  is defined by expression  

,
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H
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σ
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where 1σ  is the first and nσ  is the last singular values. Typical for nuclear type 
system dependence )(κ2 nH  from approximate model order n  illustrates Fig. 1. 
Increase of the model dimension on unit leads approximately to two order )(κ2 nH  
enlargement. 

Now we address the stability problem that is how to determine the regularized 
solution of the identification problem. As it was said before model order n  is 
regarded as regularization parameter. However it is more convenient to use 
condition number for numerical modeling of identification process instead n  since 
condition number is roughly linked with n  for each concrete system. In this case 
condition number may represent the class of system even with different n .  

Estimations of Φ̂  and Ψ̂  depend on observation interval τ . Obviously this 
dependence become tangible when τ  is changed exponentially. So it is appropriate 

 V.F. Gubarev, A.V. Gummel, S.V. Melnychuk, 2014 
ISSN 0452-9910. Кибернетика и вычисл. техника. 2014. Вып. 177 



 
11 

to choose discrete time kτ  as 010 τ=τ k
k  where 0τ  is initial proper observation 

interval. 

 
Fig. 1. Condition number values for approximate models of different order 

We exploit small interval [ ]kkk ∆+ττ ,  near each kτ  for data collection and 

estimations of Φ̂  and Ψ̂ . We use set of matrices H obtained from these data for 
stability analysis. We can judge about appearing unstable solution by the scattering 
of eigenvalues obtained from equation 0)( =sW  with coefficients iw  ( ni ,1= ) 
calculated according to system (9). Fig. 2 summarizes the results of multiple 
numerical experiments for data generating systems with different structures and 
parameters. On plane of two parameters )(κ2 H  and τ  are shown the stability 
domain A , range C  where all systems were unstable and transition domain B  
where part of the systems provide the stable solution and another are unstable. 
Further τ  increase leads to curves merging and after that joint curve tend to 
saturation that is explained by dominant influence of computational errors. As a 
result even for precise Φ , Ψ  models with order 112 >+ PQ  lie in unstable 
domain. For models from transition domain the checking test on stability is 
required. 

 
Fig. 2. Solution stability domains for frequency identification 
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REGULARIZED SUBSPACE (4SID) IDENTIFICATION METHOD 
 

To build a finite-dimensional model of a plant with a modification of the 4SID 
method difference approximation of system (1) was selected as a model set. This 
model set may be written as  

,,1 t
T

tttt xcybuAxx =+=+  (13) 

where A  is a matrix α×α , b  is a vector 1×α , Tc  is a vector α×1 , α  is a 
model dimension, discretization t∆  is fitted so that 0lim =∆

∞→α
t , i.e. description 

(13) should in limit lead to result coinciding with continuous approximation. 
Subspace identification is a well developed method and description of it may 

be found for example in [13, 14]. Here we consider simplified version. Let input 

tu  be exited by square wave-form oscillator alternating with relaxation intervals 
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be varied. Hankel matrix Y  is formed from M  measurements 

Miii yyy ,122,121,12 ,,, +++ K  on each relaxation interval  





















=

+

+

+

MNMM

N

N

yyy

yyy
yyy

Y

,1231

2,123112

1,123111

K

MMMM

K

K

. 

By analogy we form matrix X  from vectors 12 +ix  relevant to origin of each 
relaxation interval 
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where α=+ ,1,,12 kx ki  is a component of vector 12 +ix . Due to equations (13) and 

specifics of the matrix X , Y  the following matrix equation may be written 
[13, 14] 

,1 XY M ⋅Γ= +  (15) 

where 
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1  is an observability matrix. 
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According to realization theory if 21 YYY ⋅=  is any given full-rank 
factorization of the Hankel matrix, then 1Y  is the observability matrix and 2Y  is the 
matrix of initial state on the relaxation intervals for some state-space realization. 
Optimal way for realization of such factorization is to use SVD decomposition. Let 
the SVD of Y  be given by 

,TVQY Σ=  (16) 

where Q  and V  are orthogonal matrices and Σ  is a diagonal matrix with singular 
values in non-increasing order on the diagonal. If the data generating system is n  

order, then in the ideal case (all 12 +i
my  are precisely given) Y  is of rank n , so that 

only the n  first singular values are non-zero provided that nNnMn >>≥α ,, . 

But in reality instead of precise Y  we would have a matrix ZYY +=
~ , where Y  is 

a true matrix and Z  is a matrix produced by perturbation of input and output noise. 
Then all singular values of matrix Σ  will be positive. For multidimensional or 
infinite-dimensional systems condition number is evaluated as a ratio of singular 
values that grows exponentially when α  incremented by one. So SVD 
decomposition (16) we write as follows  

,T
rrr

T
nnn VQVQY Σ+Σ=  (17) 

where )( rn QQQ = , ),( rn VVV = , 




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
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Σ
=Σ

r

n
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0
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In the framework of statistical approach for finite-dimensional system the first 
term corresponds to a “signal” and the second is a “noise”. It is clear that 0=Σr  in 
the absence of errors. So the dimension of nΣ  defines first of all the system order 
n . In our case due to ill-conditioning of the matrix nY  (first term) for large (or 
even for not large) n  we consider partition (17) as regularization procedure. First 
term with maximal n  defines the maximum order of approximate model when 
identification still gives the stable solution. Unlike to statistical approach the model 
order estimation depends on value YY −

~ . When 0~
→− YY , then following 

tendency holds ,*nn →  where *n  is an order of a model that corresponds to 

deterministic case. Value *n  is entirely defined by inevitable computational errors.  
If partition in (17) is made correctly, which means the order of approximate 

model satisfy the stability condition, the next step is to find the model parameters. 
By setting nn Q=Γ −1  the matrix A  for some realization can be obtained from the 
matrix equation 

,1:2:1 +Γ=⋅Γ MM A  (18) 

where 1:2 +Γ M  is a submatrix derived from 1+ΓM  crossing out the first row and 

M:1Γ  is a submatrix derived from 1+ΓM  crossing out the last row. 
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In non-singular case system in (18) is overdetermined and a least-squares or a 
total least-squares methods to solve the system with respect to A can be used. After 
obtaining matrix A  from (18) we find its eigenvalues that allows to write matrix 
A  in Jordan realization. For canonical controllable realization vector b  is given 
and only vector c  should be found. When canonical observable realization is 
preferable, then vector b  should be found with given vector c . With given A  and 
b  from first equation in (13) and (14) it is easy to calculate tx  in each point t  of 
the observation interval. Then the second equation in (13) allows to find vector c  
from overdetermined linear system of equations with ty  measured in experiment 
for the same input. Here we remark that problem estimation of c  is more stable in 
comparison with determination of the matrix A  eigenvalues. It means that well-
posedness of the identification problem under consideration is completely defined 

by the splitting procedure (17) that is choise of term T
nnn VQ Σ . Multiple numerical 

experiments show that condition number depends on n  in just the same way as it 
reports in Fig. 1. 

Stability property in dependence on n  was studied by numerical modeling. 

Two main parameters define the solution stability, namely, YY −=ε
~  and 

condition number 2κ  for spectral norm of the matrix T
nnn VQ Σ , i.e. 

n

T
nnn VQ

σ
σ1

2 )(κ =Σ  where 1σ  is the first and nσ  is the last singular values of the 

matrix nΣ . Instead of regularization parameter n  we choose 2κ  on the same 
reason that was pointed out for frequency method. So the plane of these two 
parameters ε  and 2κ  was used for demonstration of stability result obtained in 
multiple experiments with different system structures and parameters generating 
the data.  

 
Fig. 3. Solution stability domains for subspace identification method 

Domain A  in Fig. 3 conforms to stability and C  is unstable region. Between 
them transition zone B  is located where part of the identified models are stable 
and the other are unstable. Here as in Fig. 2 the additional stability test is required 
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to use, for example set of data obtained by randomization. Fig. 2 and 
Fig. 3 can be used for model construction of reduced order or maximal order 
assumed by stability condition. 
 
CONCLUSIONS 
 

Identification problems of infinite or multidimensional systems may be fully 
treated as essentially ill-posed. Because of using only measured in experiment 
inaccurate data in many cases we not only look for a solution of the operator 
equation but also an operator itself. Hence the problem arises how to write the 
model set that includes true model of a plant. In such situation we propose in 
capacity of model set to represent it in the form of infinite expansion and to find 
finite approximation consistent with errors in available data using for this 
regularization. In other words the identification problem in such setting is always 
ill-posed. It is shown that this property is fundamental regardless what kind of 
method is applied. 

It should be pointed out that approximate model obtained in identification is 
similar to real system with respect to output only. Moreover model parameters 
(eigenvalues and others) can essentially differ from the same parameters of the real 
system. For example, in most experiments each model eigenvalue represent whole 
cluster of system eigenvalues, i.e. is determined as averaged estimation.  

It is also worse mentioning also about ill-posed identification of the finite-
dimentional systems. All systems generating data with order corresponding to 
domain C  in Fig, 2 and Fig. 3 lead to ill-posed identification. For such systems 
only approximate model of less order than at original system may be reconstructed. 
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