2.26 Å. Полученные результаты хорошо согласуются с данными работ для ионных ассоциатов ZnTMPyP с каликсаренами аналогичного строения [17, 18].

РЕЗЮМЕ. Отримано йонні асоціати на основі натрієвої солі 5,11,17,23-тетрасульфонато-25,26,27,28-тетрагідрокситіакалікс[4]арену з *мезо*-тетра(N-метил-3-піридил)порфірином та його комплексом з ітербієм. Визначено оптимальні умови утворення асоціатів, склад сполук, вивчено їх спектрально-люмінесцентні характеристики. Встановлено, що в йонному асоціаті з порфіринатом ітербію реалізується 4*f*-люмінесценція йонів цього елементу.

SUMMARY. The self-assemblies on the base of sodium salt of 5,11,17,23-tetrasulfonate-25,26,27,28-tetrahydroxythiacalyx[4]arene with *meso*-tetra(N-methyl-3-pyridyl)porphyrin and its ytterbium complex were obtained. The optimal conditions of assemblies formation and composition of compounds were determined. Their spectral-luminescent characteristics were studied. It was established that in assembly with ytterbium-porphyrinates the 4*f*-luminescence of ytterbium ions was realized.

- 1. Morohashi N., Narumi F., Iki N. et al. // Chem. Rev. -2006. -106. -P. 5291-5316.
- 2. Iwamoto K., Araki K., Fujushima H. // J. Chem. Soc. -1992. -15. -P. 1885-1887.

Физико-химический институт им. А.В. Богатского НАН Украины, Одесса

- Shevchuk S., Alexeeva E., Rusakova N. et al. // Mendeleev Commun. -1998. -3. -P. 104—105.
- 4. Wei Y., Guo X., Shuang Sh. et al. // J. Photochem. Photobiol. B: Biology. -2005. -81. -P. 190-194.
- 5. Fiammengo R., Timmerman P., Huskens J. et al. // Tetrahedron. -2002. -58. -P. 757-764.
- 6. Baldini L., Ballester P., Casnati A. et al. // J. Amer. Chem. Soc. -2003. -125. -P. 14181—14189.
- Shivanyuk A., Rudkevich D., Reinhoudt D. // Tetrahedron Lett. -1996. -37. -P. 9341—9347.
- 8. Lang K., Kubat P., Lhotak P. et al. // Photochem. Photobiol. -2001. -74. -P. 558-565.
- Fiammengo R., Timmerman P., Jong F. et al. // Chem. Commun. -2000. -P. 2313—2314.
- Costanzo L., Geremia S., Randaccio L. et al. // Angew. Chem. Int. Ed. -2001. -40. -P. 4245—4247.
- 11. Fiammengo R., Wojciechowski K., Crego-Calama M. et al. // Org. Lett. -2003. -5. -P. 3367-3370.
- 12. Radzki S., Krausz P., Gaspard S. et al. // Inorg. Chim. Acta. -1987. -138. -P. 139-143.
- 13. Casnati A., Ting Y., Berti D. et al. // Tetrahedron. -1993. -49. -P. 9815-9822.
- 14. Гордон А., Форд Р. Спутник химика. -М.: Мир. -1976.
- 15. Березин Б.Д., Койфман О.И. // Успехи химии. -1973. -42, № 11. -Р. 2007.
- 16. Timkovich K., Tulinsky A. // Inorg. Chem. -1977. -16, № 4. -P. 962—963.
- 17. Gulino F., Lauceri R., Frish L. et al. // Chem. Eur. J. -2006. -12. -P. 2722-2729.
- Moschetto G., Lauceri R., Gulino F. et al. // J. Amer. Chem. Soc. -2002. -124. -P. 14536—14537.

Поступила 17.01.2009

УДК: 546.16: 831'161.659.661.667.668

О.П. Іваненко, Н.М. Компаніченко, А.О. Омельчук, Л.М. Рудковська, В.Ф. Зінченко ВЗАЄМОДІЯ ТЕТРАФТОРИДУ ЦИРКОНІЮ З НЕСТЕХІОМЕТРИЧНИМИ

ФТОРИДАМИ ЛАНТАНОЇДІВ (САМАРІЮ, ЄВРОПІЮ, ТУЛІЮ ТА ІТЕРБІЮ)

Методами хімічного і рентгенофазового аналізу, УФ- та ІЧ-спектроскопії досліджено взаємодію між тетрафторидом цирконію та фторидами лантаноїдів (самарій, європій, тулій, ітербій) нижчих ступенів окиснення в температурному інтервалі 700—900 °С. Показано, що у всіх вивчених системах утворюються сполуки LnZrF₆ (Ln — Sm, Eu, Tu, Yb), кристалічна гратка яких подібна до надструктури Yb₂₇F₆₄. Виключення становить фторцирконат тулію (TuZrF₆), структура якого індексується по типу надструктури Tu₁₃F₃₂₋₈ гексагональної сингонії. Для всіх отриманих сполук розраховано параметри кристалічних граток і зроблено віднесення частот смуг поглинання ІЧ-спектрів.

Завдяки унікальним фізико-хімічним властивостям — широкому діапазону прозорості та низькому рівню оптичних втрат [1, 2] — фторцирконатне скло є перспективним матеріалом для опти-

[©] О.П. Іваненко, Н.М. Компаніченко, А.О. Омельчук, Л.М. Рудковська, В.Ф. Зінченко, 2009

ки та лазерних систем. Привертають до себе увагу системи за участю BaF_2 і ZrF_4 . Це пов'язано з тим, що на основі даних сполук створені перспективні нові оптичні матеріали [3, 4]. Згідно з літературними даними, фториди рідкісноземельних елементів нижчих ступенів окиснення, таких як самарій, європій та ітербій, за своїми рентгенографічними характеристиками подібні до фторидів лужно-земельних елементів [5]. Даних про дослідження систем RF_2 — ZrF_4 (R — Sm, Eu, Tu, Yb) нами не знайдено. Є відомості про синтез сполук складу $M^{II}ZrF_6$, де M^{II} — Ni, Fe,Co, Mg, Ca, Mn, Zn [6—8], які кристалізуються в кубічній сингонії.

У зв'язку з цим отримання аналогічних речовин з дифторидами рідкісноземельних металів, вивчення їх властивостей представляє науковий і практичний інтерес.

У даному повідомленні приведені результати вивчення взаємодії фторидів РЗЕ нижчих ступенів окиснення з тетрафторидом цирконію.

Дослідження виконані методами хімічного і рентгенофазового аналізу, ІЧ- та спектроскопії дифузного відбиття. Мета роботи — виявлення характеру взаємодії між LnF_{2+x} та ZrF_4 , ідентифікація сполук, що утворюються при цьому.

Фториди рідкісноземельних елементів нижчих ступенів окиснення LnF_{2+x} (Ln — Sm, Eu, Tu, Yb) синтезували з трифторидів кваліфікації х.ч. шляхом відновлення їх відповідними металами при 700—950 °C у вакуумі. Фторид європію відновлювали при 1000 °C кремнієм. Комерційний тетрафторид цирконію марки х.ч. прогрівали при 500 °C з трикратним надлишком NH₄F. Отриманий фторцирконат амонію розкладали у вакуумі (10⁻² Top) при 800—850 °C.

Для одержання фторцирконатів РЗЕ (II) складу $LnZrF_6$ використовували дві різні методики синтезу: змішування у мольних співвідношеннях 1:1 тетрафториду цирконію та LnF_{2+x} (Ln — Sm, Eu, Tu, Yb) по реакції:

$$LnF_{2+x} + ZrF_4 = LnZrF_6; \qquad (1)$$

використання в якості відновника трифторидів РЗЕ до LnF_{2+x} цирконію (монокристалічний метал, подрібнений до частинок розміром ≈ 0.1 мм), який додавали в суміші $ZrF_4 + LnF_3$ (Ln — Sm, Eu, Tu, Yb), для протікання реакцій за схемою [6]:

$$LnF_{3} + 3/4ZF_{4} + 1/4Zr = LnZrF_{6}$$
. (2)

Суміші перетирали в агатовій ступці, помі-

Таблиця 1

Умови синтезу та параметри кристалічних граток фторцирконатів РЗЕ (Sm, Eu, Tu, Yb) *

Отримана	Структурний тип та параметри	Колір сполук	Умови синтезу		
$(x \approx 0.1 - 0.2)$	кристалічних раток	котр сполук	<i>T</i> , ^o C	τ, год	
SmZrF _{6+x}	<i>a</i> =16.7170 Å , <i>c</i> β	Білий	700	3	
EuZrF _{6+x}	$a=16.7364$ Å , $c\beta$	Коричневий	730	3	
$^{1}EuZrF_{6+x}$	<i>a</i> =16.7132 Å, <i>c</i> β	Чорний	700	3	
TuZrF _{6+x}	a=14.2680 Å, $c=9.7004$ Å , hex,**	Сірий	700	3	
¹ TuZrF _{6+x}	a=14.3027 Å, $c=9.6539$ Å , hex,**		700	3	
2 YbZrF _{6+r}	$a=8.881$ Å, $\alpha=71.57^{\circ}$ $rh\alpha^{***}$	Чорний	800	6	
3 YbZrF _{6+r}	$a=16.7936$ Å , $c\beta$		720	3	
012	$a{=}10.3668$ Å, $c{=}19.4769$ Å , $rh\alpha^{****}$				
YbZrF _{6+r}	$a=$ 16.7248 Å , $c\beta$		800	3	
$YbZrF_{6+r}$	a =16.7104 Å , $c\beta$		700–750	1	
4 YbZrF _{6+x}	$a=16.7028$ Å , $c\beta$		600	1	

* Параметри розраховані по надструктурі [5, 9]: Yb₂₇F₆₄ (a=16.712 Å); ** Tu₁₃F_{32-δ} (hex. a=14.2648 Å; c= =9.7067 Å); *** Yb₁₃F₃₃ (R $\overline{3}$ ромбоїд.: a=8.8334 Å; α=71.517°); **** Yb₁₃F₃₃ (R $\overline{3}$ гексагонал.: a=10.3671 Å; c=19.4894 Å). Синтез проводили по реакції: ¹ LnF₃ + 3/4ZrF₄ + 1/4Zr = LnZrF₆; ² YbF_{2+x} + ZrF₄ = YbZrF_{6+x}, вакуумована ампула; ⁴ 2Yb + 3ZrF₄ = 2YbZrF₆ + Zr.

Т	а	б	Л	И	ц	Я	2
---	---	---	---	---	---	---	---

Послідовність та індексація рефлексів для кубічних надструктур типу LnZrF_{6+x}, де Ln — Sm, Eu, Yb, та гексагональної надструктури TuZrF_{6+x}

SmZr	nZrF _{6+x} EuZrF _{6+x}		F_{6+x}	YbZrF _{6+x}		h	k	1	TuZrF _{6+x}		h	k	1
d	<i>I</i> , %	d	<i>I</i> , %	d	<i>I</i> , %	п	ĸ	ı	d	<i>I</i> , %	п	ĸ	l
_	_	5.0675	41	5.0675	17	3	1	1	4.0401	100	1	1	2
_	_	_	_	4.0492	11	4	1	0	3.9428	17	1	1	2
3.9864	54	_	-	3.9428	9	4	1	1	3.8584	8	2	0	2
_	_	3.8176	23	_	_	3	3	1	3.6851	17	3	0	1
3.7618	44	_	_	3.7078	22	4	0	2	3.5971	37	2	2	0
3.6926	65	_	_	"	,,	,,	,,	,,	3.3948	37	2	1	2
_	_	3.6553	21	3.6115	64	4	2	1	3.2261	10	3	1	1
_	_	3.6405	21	,,	,,	,,	,,	,,	3.1809	55	3	0	2
3.5477	71	3.5687	24	_	-	3	3	2	3.0737	11	4	0	0
3.5408	71	3.5065	21	_	_	,,	,,	,,	3.0429	14	1	0	3
	_	_	_	3.3948	46	4	2	2	2.9449	8	1	1	3
3.2725	100	_	_	_	_	5	1	0	2.8444	46	3	2	0
_	_	3.2433	18	3.1865	100	5	1	1	2.6710	8	2	1	3
	_	,,	,,	3.1644	37	,,	,,	,,	2.6180	9	4	0	2
	_	3.1589	58	_	_	5	0	2	2.5321	10	3	0	3
	_	3.1317	43	_	_	,,	,,	,,	2.4714	18	5	0	0
3.0278	88	3.0789	16	3.0737	4	5	2	1	2.3353	10	4	2	0
									2.2038	12	5	0	2
	_	2.9882	15	_	_	4	0	4	2.0424	18	4	3	0
_	_	2.8400	39	2.8225	47	5	3	1	2.0208	20	5	1	2
	_	_	_	_	_	6	0	2	1.9872	19	4	3	1
_	_	2.6217	16	2.6180	9	6	2	1	1.9198	31	1	0	5
_	-	2.6033	17	2.6033	10	,,	,,	,,	1.8879	20	6	1	0
2.5530	38	2.5390	100	2.5390	55	5	3	3	1.8483	18	6	1	1
_	-	_	_	2.4714	23	6	3	1	1.8396	18	3	2	4
_	-	_	_	2.3324	4	7	1	1	1.8156	25	4	1	4
_	-	_	_	2.2981	5	7	2	0	1.7744	14	2	1	5
	_	_	_	2.2841	4	7	0	2	1.7429	20	6	0	3
2.2116	34	2.2142	19	2.2142	20	7	2	2	1.7009	14	3	3	4
	_	2.1809	12	2.1834	5	7	3	1	1.6515	21	7	0	2
2.1293	33		_	_	_	7	3	2	1.6104	10	7	1	1
	_	_	_	2.0872	4	8	0	0	1.5679	9	6	0	4
	_	_	_	2.0359	16	7	3	3	1.5394	12	6	3	1
2.0102	39	2.0166	18	_	-	8	2	1	1.4807	11	6	3	2
1.9893	92	_	-	1.9955	18	6	5	3	1.4357	11	4	4	4
_	-	1.9689	27	_	-	8	2	2	1.4338	11	4	0	6
1.9294	54	_	_	_	_	7	5	1	1.4250	11	5	5	0
1.9217	35	_	_	1.9179	30	6	6	2	1.4126	11	6	0	5
1.9179	33	_	_	,,	,,	,,	,,	,,	1.3482	11	8	2	0
1.9084	26	_	_	_	_	8	3	2	1.3316	10	4	2	6
1.9009	20		_	_	_	,,	,,	,,	1.3179	10	8	1	3
1.8972	21	_	_	_	-	7	5	3	1.2649	12	4	3	6
1.8733	29	_	_	1.8769	24	8	0	4	1.2404	12	7	4	2

щали в кварцеві ампули, вакуумували та запаювали. Ампули з речовинами поміщали в піч шахтного типу. Зразки витримували при температурах 700—800 °С протягом 3—4 год.

Отримані фази досліджували методами хімічного, РФА та ІЧ- і електронної спектроскопії. Хімічним аналізом визначали вміст компонентів в одержаних сполуках: РЗЕ та цирконій у вигляді оксидів після сплавлення наважки з персульфатом калію, а фтор — за допомогою йоноселективного електрода (наважку сплавляли з пероксидом натрію або з його карбонатом у присутності оксиду кремнію). Рентгенофазовий аналіз (РФА) здійснювали на дифрактометрі ДРОН-ЗМ (СиК_овипромінювання) методом порошку. Рентгенограми ідентифікували за допомогою комп'ютерної програми Ident. ІЧ-спектроскопію виконували на спектрофотометрі Specord M-80 в області від 4000 до 200 см⁻¹ на таблетованих зразках з бромідом калію. Спектроскопію дифузного відбиття досліджували на спектрофотометрі Lambda 9 (Perkin-Elmer) у діапазоні 200—2500 нм.

Дослідження зразків, отриманих при нагріванні сумішей LnF_{2+x} (Ln — Eu, Yb, Sm, Tu) та ZrF₄, дозволило встановити, що між компонентами відбувається взаємодія, в результаті якої утворюються фази різного кольору (табл. 1). Одержані подвійні фторцирконатні сполуки з P3M (II), де Ln — Sm, Eu, Yb, за даними РФА, кристалізуються по типу кубічної (Yb₂₇F₆₄), а тулій — гексагональної (Tu₁₃F_{32-б}) надструктур [5, 9].

За даними для кубічної та гексагональної надструктур (відповідно ітербію і тулію) [5, 9] розраховано параметри кристалічних граток отриманих сполук (табл. 1).

Виявлено, що параметри граток одержаних сполук залежать від температури синтезу і часу витримування. Крім того, вони зменшуються від a=16.736 Å (європій) до 16.7104 Å (ітербій) при однакових умовах синтезу. З цього ряду випадає самарій, для сполуки якого параметр гратки а = 16.7170 Å. Слід зазначити, що параметри гратки для сполук тулію та ітербію зберігаються незалежно від методики їх синтезу, по реакціям (1) або (2). При взаємодії європію з цирконієм та тетрафторидом цирконію по реакції (2), за результатами РФА спостерігається утворення текстури, основні рефлекси якої співпадають з рентгенограмою сполуки, одержаної по реакції (1). У випадку з самарієм в зазначених умовах синтезу сполука типу SmZrF_{6+r} не ідентифікується. В продуктах реакції знайдено SmZrF $_7$ з домішками SmF $_2$, SmF $_3$ i ZrF $_4$.

У табл. 2 представлені результати РФА та проведена індексація рефлексів для сполук складу LnZrF_{6+x}, де Ln — Sm, Eu, Tm, Yb, на основі кубічної (*c*β) Yb₂₇F₆₄ [5] і гексагональної Tu₁₃F_{32-δ} [9] надструктур. Розраховані параметри кристалічних граток всіх отриманих сполук. За допомогою табл. 2 можна зробити висновок про те, що сполуки тулію кристалізуються в надструктурі, ізотипній сполуці Yb₁₃F_{32-δ}, які ізоструктурні Na₇Zr₆F₃₁. Кубічну надструктуру (*c*β) ітербію можна розглядати як мікроздвоєння між структурами Yb₁₄F₃₃ (*rh*α) та Yb₁₃F_{32-δ} (*rh*β). Подібні сполуки LnZrF_{6+x} (Ln — Sm, Eu) ізотипні до Yb₂₇F₆₄.

Дані про ІЧ-спектри одержаних сполук представлені в табл. 3 і на рис. 1. В ІЧ-спектрах досліджених сполук спостерігаються п'ять областей: 250-290, 300-400, 420-520, 570-620, 750-790 см⁻¹. В області 250—290 см⁻¹ смуги поглинання можна віднести до асиметричних деформаційних коливань зв'язку Ln-F та до деформаційних коливань фторцирконатних угрупувань. В області 300-400 см⁻¹ спостерігаються валентні асиметричні коливання зв'язку Ln-F. Смуги поглинання в областях 420—520 і 570—620 см⁻¹ відносяться до валентних коливань місткових та немісткових зв'язків Zr-F, що дозволяє зробити припущення про наявність у структурі сполук фторцирконатних поліедрів. Смуги поглинання в області 750-790 см⁻¹ можна описати сумою двох фундамен-тальних частот ($v_1 \approx 270$ —290 см⁻¹ та $v_3 \approx 500$ см⁻¹

Рис. 1. IЧ-спектри фторцирконатів типу $LnZrF_{6+x}$: $1 - EuZrF_{6+x}$; $2 - SmZrF_{6+x}$; $3 - TuZrF_{6+x}$; $4 - YbZrF_{6+x}$.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 8

Таблиця 3 Частоти смуг поглинання IU-спектрів фторцирконатних сполук самарію, європію, тулію та ітербію (II), а також вихідних сполук

Склад сполуки	Частоти (v, см ⁻¹) та інтенсивність смуг поглинання								
(<i>x</i> ≈0.1–0.2)	Sm	Eu	Tu	Yb					
ZrF_4	270-290 сил	380, 400 cep	450 сер, 515 сил	680 сл					
ZrF_{2-x}	285 cep	325 сл	440 пл., 500 сил						
SmF _{2.25}	250-400 сил	450 cep							
$SmZrF_{6+x}$	280 сил	360 сил	420, 495 сил	570, 620 сл					
SmF ₃	270 сил	335, 385 сил	430 пл						
SmZrF ₇ *	250 сил	330, 375 сил, 400 пл	450-700						
EuF _{2.1}	270, 285 сл	300, 315, 350 сл 400 пл							
$EuZrF_{6+x}$	265, 285 сл	350 сер, 370 сл	420 сил						
EuF ₃	270-285 сил	360 сил.	420 пл						
$^{1}EuZrF_{6+x}$	280, 305 cep	330–340 cep	450 сил						
TuF _{2.38-2.42}	275 сил	в області 375-600 загал	ьне поглинання з мак	симумом при 400					
TuZrF _{6+x}	290 сил	350 cep	420, 450, 500 сил	575 сл 790					
TuF ₃	290 сил	340 пл, 360, 387 сил	465, 510 пл						
¹ TuZrF _{6+x}	275–290 cep	325 сл, 350 сер, 395 сл	450 сл, 515 сил						
YbF _{2.1}	270, 280 сл								
2 YbZrF _{6+x}	290 сил	350 сил	425 сил, 455, 500 пл	587 cep, 760					
3 YbZrF _{6+x}	270 сер, 290 сл	355 сил	425, 500 сил	575, 750					
4 YbZrF $_{6+x}$	280 сл		520 сил						

* Синтез вели по реакції SmF₃ + 3/4ZrF₄ + 1/4Zr = SmZrF₆; ¹ по реакції LnF₃ + 3/4ZrF₄ + 1/4Zr = LnZrF₆; ² YbF_{2+x} + ZrF₄ = YbZrF_{6+x}, вакуумована ампула; ⁴ YbF_{2.4} + ZrF₄ = YbZrF_{6.4}; сил – сильна, сер – середня, сл – слаба, пл – плече.

Рис. 2. Спектр дифузного відбиття фторцирконату ітербію YbZrF_{6+x}.

[10]) комплексного аніону $\operatorname{ZrF}_6^{2-}$. Поглинання в області 880—900 см⁻¹ відносяться до коливань зв'язку F–H–F [11].

Слід зазначити, що спектри сполук $LnZrF_{6+x}$ подібні із спектром одержаного при тих же умовах $CaZrF_6$.

Отримані результати дозволяють зробити висновок, що синтезовані сполуки складу $LnZrF_{6+x}$ побудовані з фторцирконатних каркасів, які складаються з поліедрів ZrF_n , об'єднаних між собою містковими зв'язками [12].

На рис. 2 представлений спектр дифузного відбиття фторцирконату ітербію. Смуги в області 200 —400 нм з максимумами при 220, 275 і 350 нм підтверджують наявність у сполуці Yb (II), а максимум при 980 нм — присутність незначної кількості Yb (III).

Таким чином, вперше отримано ряд сполук із загальною формулою $LnZrF_{6+x}$, де Ln - Eu, Yb, Sm, Tu. Рентгенофазові дослідження показали, що синтезовані сполуки кристалізуються на основі кубічної (*c*β) Yb₂₇F₆₄ і гексагональної Tu₁₃F_{32-δ} надструктур. Сполуки тулію кристалізуються в над-

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 8

структурі, які ізотипні з сполукою Yb₁₃F_{32-δ} та ізоструктурні Na₇Zr₆F₃₁. Кубічну надструктуру (сβ) ітербію можна розглядати як мікроздвоєння між структурами Yb₁₄F₃₃ (*rh*α) та Yb₁₃F_{32-δ} (*rh*β). Подібні сполуки LnZrF_{6+x} (Ln — Sm, Eu) ізотипні до Yb₂₇F₆₄.

Результати IЧ-спектроскопічних досліджень дають підстави вважати, що синтезовані сполуки побудовані з фторцирконатних каркасів, які складаються з поліедрів ZrF_n , об'єднаних між собою містковими зв'язками.

РЕЗЮМЕ. Методами химического и рентгенофазового анализа, УФ- и ИК-спектроскопии исследовано взаимодействие между тетрафторидом циркония и фторидами лантаноидов (самарий, европий, тулий, иттербий) более низких степеней окисления в температурном интервале 700—900 °С. Показано, что во всех изученных системах образуются соединения LnZrF₆ (Ln — Sm, Eu, Tu, Yb), кристаллическая решетка которых подобна сверхструктуре Yb₂₇F₆₄. Исключением является фторцирконат тулия (TuZrF₆), структура которого индексируется по типу сверхструктуры Tu₁₃F_{32-δ} гексагональной сингонии. Для всех полученных соединений рассчитаны параметры кристаллических решеток и сделаны отнесения частот полос поглощения ИК-спектров.

SUMMARY. The interaction beetween zirconium tetrafluoride and fluorides of lanthanides (samarium, europium, thulium, ytterbium) in lower oxidacion states in a temperature range of 700–900 °C has been studied by chemical and X-ray phase analyses, UV and IR spect-

Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Київ Фізико-хімічний інститут ім. А.В. Богатського НАН України, Одеса roscopies. It has been shown that in all systems studied, $LnZrF_6$ compounds (Ln — Sm, Eu, Tu, Yb) are formed, whose crystal lattice is semilal to the Yb₂₇F₆₄ superstructure. Thulium fluorozirkonat (TuZrF₆), whose structure is indexed as the Tu₁₃F_{32-δ} superstructure is indexed of he-xagonal system, in an exception. For all compounds obtained, the lattice parameters have been calculated, and assignment.

- 1. Бабицына А.А., Емельянова Т.А., Федоров В.А. // Неорган. материалы. -1997. -33, № 1. -С. 87—92.
- 2. Бабицына А.А., Емельянова Т.А. // Журн. неорган. химии, 1993. -38, № 9. -С. 1587—1589.
- 3. *Раков* Э.Г. // Там же. -1991. -**36**, вып. 4. -С. 828—838.
- 4. Халилов В.Д., Богданов В.Л. // Журн. Всесоюзн. хим. общ-ва им. Д.И. Менделеева. -1991. -36, № 5. -С. 593—602.
- 5. Greis O. // Z. anorg. allg. Chem. -1977. -**B.430**. -S. 175-198.
- Poulain M., Chaudron M.G. // C.R. Acad. Sci. Paris. Ser. C. -1970. -271. -P. 822–824.
- Poulain M., Poulain Mih. // Rev. de Chimie minerale. -1975. -12. -P. 9.
- Ратников И.Д., Коренев Ю.М. и др. // Деп. ВИНИ-ТИ, № 264 от 24/1 1977 г.
- 9. Greis O., Petzel T. // Z. Anorg. Allg. Chem. -1977. -B.434. -S. 89.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. -М.: Мир, 1991.
- Антохина Т.Ф., Игнатьева Л.Н., Савченко Н.Н., Кайдалова Т.А. // Журн. неорган. химии. -2003. -48, № 12. -С. 2029—2033.
- Игнатьева Л.Н., Стремоусова Е.А. и др. // Физика и химия стекла. -1994. -20, № 2. -С. 216—220.

Надійшла 25.12.2008

УДК 501.134.5-537

Д.О. Дурилін, О.В. Овчар, А.Г.Білоус

БАГАТОФАЗНІ СИСТЕМИ НА ОСНОВІ ТИТАНАТІВ ТА СИЛІКАТІВ МАГНІЮ ЯК ОСНОВА ДЛЯ НОВИХ НВЧ-ДІЕЛЕКТРИКІВ

Досліджено можливість синтезу нових багатофазних діелектриків на основі кристалічних фаз різного структурного типу, включаючи ільменіт (MgTiO₃), шпінель (Mg₂TiO₄), форстерит (Mg₂SiO₄) та перовскит (CaTiO₃). Встановлено вплив хімічного складу на кристалічну структуру окремих сполук магнію та на мікроструктуру і електрофізичні властивості багатофазних матеріалів, одержаних на їх основі. Знайдено

© Д.О. Дурилін, О.В. Овчар, А.Г.Білоус, 2009