УДК 541.451:548.73:537.622

О.І. В'юнов, А.І. Товстолиткін, О.З. Янчевський КОМПЕНСАЦІЯ ЗАРЯДУ ПРИ ЗАМІЩЕННЯХ МАНГАНУ В МАНГАНІТІ ЛАНТАНУ

Побудовано експериментальні залежності об'єму елементарної комірки твердих розчинів на основі манганіту лантану, в якому марганець заміщували *d*-металами (Cu, Fe, Cr, Ti), від вмісту домішки і теоретичні криві, обчислені для різних механізмів компенсації заряду, які можна припустити при заміщенні марганцю. На основі одержаних даних, а також кривих намагніченості насичення і спектрів феромагнітного резонансу зроблено висновки про найбільш вірогідні моделі компенсації заряду домішки.

Леговані манганіти з деформованою перовскітоподібною структурою, La_{1-x}A_xMnO₃ (А лужний або лужно-земельний елемент) викликають значний інтерес завдяки високій чутливості їх електричних властивостей до магнітного поля (ефект колосального магнітоопору), яка робить цей клас матеріалів перспективними для використовування в приладах магнітоелектроніки [1]. В більшості випадків суттєвих змін електричного опору можна досягти тільки в сильних полях або при низьких температурах, що суттєво обмежує область практичного використання. Нещодавно [2] було показано, що складні заміщення в катіонних підгратках La_{1-к}A_кMnO₃ є ефективними для покращення магніторезистивних властивостей. Зусилля дослідників переважно були спрямовані на дослідження заміщень у підгратці лантану [1—3]. Проте більш значні модифікації взаємодій у ланцюзі Mn³⁺–О–Mn⁴⁺ можна чекати для заміщень у підгратці марганцю. Заміщення марганцю як магнітними (Co, Ni, Fe ...), так і не магнітними (Ge, Al, Cu ...) елементами були досліджені раніше в роботах [4-6].

Показано, що магнітоопір можна значно збільшити при використанні домішок міді [7]. Заміщення марганцю міддю не тільки робить слабшим так званий подвійний обмін між йонами марганцю [2], але і сильно змінює всю систему конкуруючих взаємодій у манганітах. Аналізувати і передбачати властивості легованих міддю манганітів важко, тому що поки немає узгодження стосовно одного з ключових параметрів, а саме ступеня окиснення міді в цих сполуках. Дані про ступінь окиснення міді в таких матеріалах є суперечливими [8].

На сьогодні є дані про вплив заліза на властивості манганітів лантану-кальцію $La_{1-x}Ca_xMnO_3$ [9—12]. У $La_{0.75}Ca_{0.25}Mn_{1-y}Fe_yO_3$ існують розмірно-розподілені кластери, які делокалізуються

при певному критичному значенні *у* [9, 10]. У твердому розчині La_{0.67}Ca_{0.33}Mn_{0.90}Fe_{0.10}O₃ знайдена конкуренція між феромагнітним і антиферомагнітним характерами взаємодій між кластерами, а також перехід у стан спінового скла [11]. Для одного й того ж складу La_{0.7}Ca_{0.3}Mn_{0.95}Fe_{0.05}O₃ зниження $T_{\rm C}$ у порівнянні з нелегованим зразком складає від 10 K/% Fe [12] до 13 K/% Fe [13]; сама величина магнітоопору при легуванні залізом системи La_{1-r}Ca_rMnO₃ змінюється мало.

У системах $La_{0.7}Sr_{0.3}Mn_{1-x}Cr_xO_3$ малі x дозволяють знизити T_C до рівня кімнатних температур, що є важливим для розробки практичних елементів магніторезистивних пристроїв [16]. Дослідження легованих титаном манганітів $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_3$ показали, що збільшення вмісту титану приводить до значного зменшення спонтанної намагніченості та точки Кюрі [15— 18]. Однак запропонована в цих роботах модель заміщення йонів Mn^{4+} йонами Ti⁴⁺ не знайшла експериментального підтвердження при дослідженні структурних аспектів легування $La_{0.7}Sr_{0.3}$ -Mn_{1-x}Ti_xO₃ титаном [19], що вимагає додаткового розгляду різних моделей.

Метою даної роботи є систематичне дослідження структурних і магнітних властивостей твердих розчинів $La_{0.7}Sr_{0.3}Mn_{1-x}M_xO_{3\pm\delta}$ (М — Cu, Fe, Cr, Ti) і визначення моделі компенсації заряду *d*-металів у позиціях марганцю на основі аналізу взаємозв'язків між структурними, магнітними і резонансними властивостями твердих розчинів.

Зразки для досліджень були синтезовані методом твердофазних реакцій. Стехіометричні кількості реагентів змішували і гомогенізували з додаванням дистильованої води на вібромлині з корундовими мелючими тілами протягом 6 год. Отриману шихту висушували при 380—400 К і пропускали через капронове сито. Після синте-

[©] О.І. В'юнов, А.І. Товстолиткін, О.З. Янчевський, 2009

зу при 1170 К протягом 4 год проводили повторний гомогенізуючий помел, додавали водний розчин полівінілового спирту і пресували зразки діаметром 10 мм і товщиною 3 мм. Керамічні зразки спікали впродовж 2 год при температурах 1570—1620 К.

1570—1620 К. Вміст Мп³⁺, Мп⁴⁺ у зразках визначали титруванням йоду розчином тіосульфату натрію. Йод витіснявся з розчину йодиду калію хлором, що виділявся при розчиненні зразка манганіту в соляній кислоті [20]. При аналізі кристалохімічних аспектів заміщення марганцю розрахунки проводили відповідно до методології, запропонованої в роботі [21]. При цьому використовували систему йонних радіусів Шеннона [22].

Структурні параметри уточнювали методом повнопрофільного аналізу Рітвельда. Рентгенівські дослідження здійснювали на дифрактометрі ДРОН-4-07 (Си K_{α} -випромінювання). Дифрактограми знімали в інтервалі кутів 2 θ = 10—150° у дискретному режимі з кроком $\Delta 2\theta$ = 0.02° і експозицією 10 с. Як зовнішні стандарти використовували SiO₂ (стандарт 2 θ) і NIST SRM1979 – Al₂O₃ (сертифікований стандарт інтенсивності).

Електроопір керамічних зразків вимірювали чотиризондовим методом у температурному інтервалі 77—370 К. Зразки для досліджень вирізали у формі паралелепіпедів розміром $2^{x}3^{x}10$ мм. Контакти наносили, випалюючи срібловмісну пасту. Магнітоопір *MR* вимірювали в магнітних полях до *H*=1.2 МА/м і визначали, використовуючи співвідношення *MR* = ($R_0 - R_H/R_0$)·100 %, де R_0 — електроопір при відсутності зовнішнього магнітного поля, R_H — у зовнішньому магнітному полі напруженістю *H*. Намагніченість вивчали на SQUID-магнітометрі Quantum Design

Номер моделі	Метал				Модель вакансій		xc	<i>x</i>	<i>x</i>
	Cu	Fe	Cr	Ti	катіонних (б>0)	аніонних (б<0)	C	min	max
1			+		${\rm Mn}^{3+} \to {\rm M}^{6+} + 1/2(V_{\rm A} + V_{\rm B})$				0.24
2		+ $Mn^{4+} \to M^{6+} + 1/3(V_A + V_B)$					0.24		
3	+				$Mn^{3+} \to M^{5+} + 1/3(V_A + V_B)$				0.24
4			+	$2Mn^{4+} \rightarrow 2M^{5+} + 1/3(V_A + V_B)$				0.24	
5			+	+	$2Mn^{3+} \rightarrow 2M^{4+} + 1/3(V_A + V_B)$				0.24
6			+		$3Mn^{4+} \rightarrow 2Mn^{3+} + M^{6+}$			0.07	
7			+		$2Mn^{4+} \rightarrow Mn^{3+} + M^{5+}$			0.11	
8		+	+	+	${\rm Mn}^{4+} ightarrow { m M}^{4+}$			0.24	
9	+	+	+	+	$Mn^{3+} \rightarrow M^{3+}$				0.24
10	+	+	+		$2Mn^{3+} \rightarrow Mn^{4+} + M^{2+}$				0.08
11	+				$3Mn^{3+} \rightarrow 2Mn^{4+} + M^{1+}$				0.048
12	+	+	+	+	$2Mn^{4+} \rightarrow 2M^{3+} - 1/3(V_A + V_B)$	$2\mathrm{Mn}^{4+} \rightarrow 2\mathrm{M}^{3+} + V_{\mathrm{O}}^{\bullet \bullet}$	0.070	0.24	
13	+	+	+		$2Mn^{3+} \rightarrow 2M^{2+} - 1/3(V_A + V_B)$	$2\mathrm{Mn}^{3+} \rightarrow 2\mathrm{M}^{2+} + V_{\Omega}^{\bullet\bullet}$	0.070		0.24
14	+				$Mn^{3+} \to M^{1+} - 1/3(V_{\Delta} + V_{B})$	$Mn^{3+} \rightarrow M^{1+} + V_0^{\bullet \bullet}$	0.035		0.24
15	+	+	+		$Mn^{4+} \rightarrow M^{2+} - 1/3(V_{\Delta} + V_{B})$	$Mn^{4+} \rightarrow M^{2+} + V_0^{\bullet \bullet}$	0.035	0.24	
16	+				$2\mathrm{Mn}^{4+} \rightarrow 2\mathrm{M}^{1+} - (V_{\mathrm{A}} + V_{\mathrm{B}})$	$2\mathrm{Mn}^{4+} \rightarrow 2\mathrm{M}^{1+} + 3V_{\mathrm{O}}^{\bullet\bullet}$	0.024	0.24	
17	+	+	+	+	$3/2O_2 \rightarrow ABO_3 + (V_A + V_B) + 6h^{\bullet}$				

Моделі компенсації заряду в системі $La_{0.7}Sr_{0.3}Mn_{1-x}M_xO_3$ (М — Cu, Fe, Cr, Ti)

П р и м і т к и. В моделях 1–5 зі зростанням вмісту титану величина δ збільшується, в моделях 6–11 не змінюється, а в моделях 12–16 зменшується, досягаючи нуля при $x_{\rm C}$; у моделі 17 розглядаються тільки власні дефекти по Шотки, добавка, що вводиться, явним чином в моделі не бере участь [27]; знаком "+" позначено моделі, що аналізувалися, а кольором — моделі, що реалізуються в досліджених системах; при розрахунках приймали, що в заміщених манганітах співвідношення ${\rm Mn}_{\rm LS}^{3+}$ зберігається; $x_{\rm min}$ і $x_{\rm max}$ відповідають концентраційним межам немагнітних домішок, що заміщують марганець, в яких існує однорідна феромагнітна фаза (ці величини визначені з умов $C_{\rm Mn}^{4+}$ =0.18 і $C_{\rm Mn}^{4+}$ =0.50 відповідно [26, 27]).

MPMS-55. Феромагнітний резонанс вимірювали на зразках розміром 1×1×5 мм з використанням спектрометра RADIOPAN, який працював на частоті 9.2 ГГц, напрям магнітного поля при цьому співпадав з довгою стороною зразка.

Після спікання при 1300 °С в атмосфері повітря керамічні зразки La_{0.7}Sr_{0.3}Mn_{1-x}Cu{Fe,Cr, Ti}_xO_{3+δ} мали структуру перовскиту з просторовою групою R3c. Хімічний аналіз показав, що при x=0 киснева нестехіометрія $\delta_0=0.035$, а доля Mn⁴⁺ у загальному вмісті Мп складає 0.38. Параметри кристалічної структури керамічних зразків, одержані методом рентгенівського повнопрофільного аналізу Рітвельда, порівнювали з розрахунковими значеннями в припущенні різних моделей компенсації заряду домішок (таблиця). За даними ЯМР-спектроскопії [23] марганець у манганітах знаходиться в стані Mn^{3+} і Mn^{4+} . Mn^{2+} може з'являтися тільки якщо є велика кількість вакансій у підгратці лантану [24]. Тому в даній роботі ми припускали, що марганець знаходиться тільки в ступені окиснення 3+ і 4+, тоді як мідь може бути в різному стані (1+, 2+, 3+). При розрахунках використовували встановлений в роботі [21] взаємозв'язок вільного об'єму елементарної комірки V_{f,s} з фактором толерантності t перовскиту $A_{1-a}A_{a}B_{1-b}B_{b}O_{3\pm\delta}$:

$$V_{f,s} = (V_{u,s} - V_{occ})/V_{u,s} = (1.20 \pm 0.09) - (0.95 \pm 0.09)t$$

де V_{occ} — зайнятий об'єм елементарної комірки, який рівний сумі об'ємів йонів і вакансій, розрахованих виходячи з йонних радіусів. При цьому враховували, що в твердому розчині La_{0.8}Sr_{0.2}MnO₃ йони Mn³⁺ співіснують у високоспіновому (HS) і низькоспіновому (LS) стані, причому Mn³⁺_{HS} : : Mn³⁺_{LS} ~ 3:1 [25]. Радіус катіонних вакансій у надстехіометричній області по кисню визначали за формулами [21]:

$$\mathbf{r}_{V,\mathbf{A}} \approx r_{\mathbf{A}} \cdot \sqrt[3]{V_{f,s}}; \quad r_{V,\mathbf{B}} \approx r_{\mathbf{B}} \cdot \sqrt[3]{V_{f,s}}$$

На рис. 1 показана експериментальна залежність об'єму елементарної комірки і міжатомних відстаней Мп–О матеріалів системи $La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3\pm\delta}$ від вмісту міді, а також розрахункова залежність у припущенні різних моделей компенсації заряду при заміщенні марганцю міддю (таблиця). Як видно з рис. 1, експериментальну залежність можна описати в припущенні моделі компенсації заряду міді в підгратці марганцю у вигляді $2Mn^{3+} \rightarrow Mn^{4+}+Cu^{2+}$.

Рис. 1. Експериментальна залежність об'єму елементарної комірки (*a*) і міжатомних відстаней Mn–O (б) зразків La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3±δ} від вмісту міді (крапки) і теоретичні криві, розраховані в припущенні різних механізмів компенсації заряду при заміщенні марганцю міддю (номера відповідають наведеним у таблиці).

На рис. 2, *а* показана концентраційна залежність намагніченості насичення Ms, виміряна при 10 К у магнітному полі 4 МА/м. Добре видно, що характер залежності Ms(x) сильно змінюється поблизу x = 0.07: для малих $x (\leq 0.07)$ намагніченість насичення дещо зменшується, а в області x = 0.07 зменшується набагато сильніше з ростом x, причому залежність майже лінійна. На цьому ж рисунку нанесена розрахункова залежність Ms(x) для моделі компенсації заряду міді в підгратці марганцю у вигляді $2Mn^{3+} \rightarrow Mn^{4+}+Cu^{2+}$. Бачимо, що для $x \leq 0.07$ експериментально отримані дані достатньо близькі до розрахункових, а для x > 0.07 експериментальна і розрахункова залежності істотно розрізняються.

Для пояснення вказаних закономірностей нами був проведений аналіз залежності частки Mn⁴⁺ у загальній кількості марганцю $C_{Mn^{4+}}$ від концентрації міді. При x=0 частку Mn⁴⁺ визначали за даними хімічного аналізу [20], а при x>0 розраховували, виходячи з модельного рівняння 2Mn³⁺ \rightarrow Mn⁴⁺+Cu²⁺ (рис. 2, δ). Відомо [26, 27], що в стронцієвмісних манганітах однорідна феромаг-

Рис. 2. *а* — Експериментальна (трикутники) і розрахункова (безперервна лінія) залежності намагніченості насичення матеріалів системи La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3±δ} при 10 K у магнітному полі 1.2 MA/м; *б* — частка Mn⁴⁺ у матеріалах системи La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3±δ} і область існування феромагнітної фази.

нітна фаза існує, якщо $C_{\rm Mn^{4+}}$ знаходиться в межах від 0.18 до 0.50 (заштрихована область на рис. 2, δ). За межами вказаного діапазону переважає тенденція до антиферомагнітного впорядкування, що приводить до появи антиферомагнетизму або складніших видів магнітного впорядкування [26]. З рис. 2, δ випливає, що при x > 0.07 магнітна фаза розпадається на дві, одна з яких має малу намагніченість і не насичується в магнітному полі 4000 кА/м. Для перевірки такої гіпотези нами були проведені дослідження спектрів феромагнітного резонансу зразків La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3± δ}.

На рис. 3, *а* показана еволюція спектрів ФМР при зміні вмісту міді. Для зразків з x=0 і 0.025 резонансні спектри представляють собою одиночну лінію з параметрами, що відповідають феромагнітному стану манганітів і добре узгоджуються з даними інших робіт для зразків La_{0.7}Sr_{0.3}MnO₃ (резонансне поле $B_r \cong 220$ мT, ширина лінії $w \cong$ 105 мT) [28, 29]. У зразку з x=0.050 лінія дещо розширена, що свідчить про появу магнітної неоднорідності. Головною особливістю магнітного резонансу зразків з x>0.070 є наявність двох ліній поглинання, що відповідають двом різним магнітним фазам. Ці дані добре узгоджуються з припущенням, що до $x\sim0.07$ може спостерігатися однорідна феромагнітна фаза, тоді як при x>0.07повинен відбуватися розпад на дві магнітні фази. Отримані дані підтверджують, що модель компенсації заряду міді в підгратці марганцю в системі La_{0.7}Sr_{0.3}Mn_{1-x}Cu_xO_{3±δ} описується рівнянням 2Mn³⁺ \rightarrow Mn⁴⁺+Cu²⁺, згідно з яким мідь знаходиться в ступені окиснення 2+.

Характерною особливістю системи La_{0.7}Sr_{0.3}-Mn_{1-x}Fe_xO₃ є те, що йони Fe³⁺ подібно йонам Mn³⁺ можуть бути як у високоспіновому, так і низькоспіновому стані. Експериментальна залежність для параметрів елементарної комірки була успішно описана тільки для моделі Mn³⁺ \rightarrow Fe³⁺ (9) у припущенні, що співвідношення між йонами у високоспіновому і низькоспіновому станах для заліза є таким же, як і для марганцю (Fe³⁺_{HS} : Fe³⁺_{LS} ~ 3:1). Зі збільшенням вмісту заліза форма спектрів ФМР не змінюється у широкому концентраційному діапазоні (рис. 3, *б*), який відповідає концентраційній межі домішки для моделі 10 (див. таблицю).

На рис. 4 показані експериментальна залеж-

Рис. 3. Спектри феромагнітного резонансу зразків $La_{0.7}Sr_{0.3}Mn_{1-y}Cu_yO_3$ (*a*) і $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_3$ (*б*) з різним вмістом домішки: x = 0 (*1*), 0.025 (2), 0.050 (3), 0.075 (4), 0.100 (5), 0.150 (6) (*a*); x = 0 (*1*), 0.02 (2), 0.06 (3), 0.08 (4), 0.10 (5) (*б*). T = 77 K.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 4

Рис. 4. Експериментальна залежність об'єму елементарної комірки (*a*) і міжатомних відстаней Мп–О (δ) зразків La_{0.7}Sr_{0.3}Mn_{1-y}Cr_yO₃ від вмісту хрому (крапки) і теоретичні криві, розраховані в припущенні різних моделей компенсації заряду при заміщенні марганцю хромом.

ність об'єму елементарної комірки та міжатомні відстані Мп–О системи La_{0.7}Sr_{0.3}Mn_{1–x}Cr_xO₃ від вмісту хрому *y* і теоретичні криві, розраховані виходячи з припущення різних моделей компенсації заряду при заміщенні марганцю хромом. З рис. 4 видно, що експериментальні криві добре співпадають з теоретичними залежностями, яким відповідають наступні моделі компенсації заряду: Mn³⁺ \rightarrow Cr³⁺ (9) і 2Mn³⁺ \rightarrow Mn⁴⁺+Cr²⁺ (10). Щоб зробити вибір на користь тієї або іншої моделі компенсації заряду, необхідно розглянути результати магнітних досліджень. На рис. 5

Рис. 5. Частка Mn^{4+} у зразках $La_{0.7}Sr_{0.3}Mn_{1-y}Cr_yO_3$, де 9, 10 — лінії, що відповідають моделі компенсації заряду, описаній рівняннями 9 і 10 у таблиці відповідно, в залежності від вмісту хрому.

представлено розрахований вміст Mn⁴⁺ у залежності від вмісту хрому в системі La_{0.7}Sr_{0.3}Mn_{1-x}-Сг_гО₃ з урахуванням моделей (9) і (10). У розрахунках ми виходили з припущення, що йон хрому не бере участі в подвійному обміні. В цьому випадку для обох моделей при у ≥ 0,03 повинна зникнути спонтанна намагніченість, оскільки остання зберігається при Mn⁴⁺ ≤ 0,5. Проте подальші дослідження показали, що у всьому досліджуваному діапазоні ($0 \le y \le 0.10$) у твердих розчинах La_{0.7}Sr_{0.3}Mn_{1-r}Cr_rO₃ зберігається феромагнетизм. Це підтверджується і практично незмінною формою спектру ФМР (рис. 6). Оскільки хром у манганітах бере участь у подвійному обміні, то, згідно з даними роботи [30], він може мати тільки ступінь окиснення +3, тобто реалізується

Рис. 6. Спектри феромагнітного резонансу зразків $La_{0.7}Sr_{0.3}Mn_{1-y}Cr_yO_3$ з різним вмістом хрому: y = 0.00 (1); 0.04 (2); 0.08 (3). T = 77 К.

модель (9). Найбільш вірогідною причиною участі йонів хрому в магнітній взаємодії в ланцюгах Мп–О–Сг може бути ідентичність електронних конфігурацій $(t_{2g}^{3}e_{g}^{0})$ йонів Mn⁴⁺ і Cr³⁺. Отже, згідно з нашими даними, саме реалізацією моделі (9) можна пояснити весь комплекс структурних і магнітно-резонансних властивостей системи LSMCr.

На рис. 7 показані спектри феромагнітного резонансу зразків La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO₃, які досліджені при 77 К. Хід отриманих спектрів характерний для феромагнітної фази замінних манганітів (резонансне поле $B_r \cong 220$ мТ, ширина лінії $w \cong$ 05 мТ) [29]. Видно, що зі збільшенням x до 0.15 низькотемпературний магнітний стан практично не змінюється. Ми проводили порівняння експериментальних даних, що були отримані методом повнопрофільного аналізу, з розрахованими для різних моделей компенсації заряду титану, який

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2009. Т. 75, № 4

Рис. 7. Спектри феромагнітного резонансу при 77 К зразків $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_3$: x = 0 (1); 0.02 (2); 0.04 (3); 0.06 (4); 0.08 (5); 0.10 (6); 0.15 (7).

заміщував марганець.

На рис. 8 показана експериментальна залежність об'єму елементарної комірки матеріалів системи $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_{3\pm\delta}$ від вмісту титану, а також розрахункова залежність у припущенні різних моделей компенсації заряду при заміщенні марганцю титаном (таблиця). Як видно з рис. 8, експериментальні залежності не можна описати в припущенні моделі компенсації заряду титану в підгратці марганцю, у тому числі моделі Mn⁴⁺ \rightarrow Ti⁴⁺, передбачуваній в роботах [17, 19]. В той же час при x=0.17 залежність V(x) іде паралельно прямій, розрахованій згідно з моделлю (8): Mn⁴⁺ \rightarrow Ti⁴⁺ (рис. 8, врізка). Крім того, розрахунки показують, що при x=0.17 залежність V(x) добре описується вказаною моделлю в припущенні $\delta=0$.

Рис. 8. Залежність об'єму елементарної комірки зразків $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_3$ від вмісту титану x, визначена експериментально (точки), і криві, розраховані в припущенні різних моделей компенсації заряду при заміщенні йонів марганцю йонами титану (номери відповідають таблиці). На врізці представлені дані роботи [19].

Тому можна зробити висновок, що при x=0.17 реалізується модель $Mn^{4+} \rightarrow Ti^{4+}$, в інтервалі заміщень марганцю титаном 0 ≤ x ≤ 0.17 додатково відбувається зменшення величини кисневої нестехіометрії б. Зменшення б можливо в результаті протікання процесу (12) (див. таблицю). Проте процес (12) передбачає зміну моделі компенсації заряду і, відповідно, зміну характеру залежності V(x) при x=0.07, що не підтверджується експериментально. Тому автори вважають, що при заміщенні марганцю титаном в інтервалі $0 \le x \le 0.17$ в системі $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_{3\pm\delta}$ відбувається зміна кількості власних дефектів, аналогічна зміні, що спостерігається в системі $La_{1-x}Sr_xMnO_{3+\delta}$ при заміщенні лантану стронцієм [31] (рис. 9). Цей процес описується моделлю (17), в якій беруть участь дефекти по Шоттки [32].

Рис. 9. Залежність коефіцієнта нестехіометрії по кисню від ступеня заміщення лантану стронцієм у системі La_{1-x}Sr_xMnO_{3±δ} за даними гравіметричних досліджень [31] (1) та від ступеня заміщення марганцю титаном у системі La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO₃ за даними структурних досліджень даної роботи (2).

Розглянемо, як при реалізації такої моделі компенсації заряду будуть змінюватися магнітні властивості. На рис. 10, а показана концентраційна залежність намагніченості насичення M_s при 10 К у магнітному полі 1.2 МА/м. Характер залежності $M_s(x)$ змінюється поблизу x=0.17: при менших x намагніченість насичення зменшується слабо, що узгоджується зі слабою зміною спектрів ФМР, а при великих зменшується набагато сильніше зі зростанням x, причому залежність майже лінійна. На цьому ж рисунку нанесена розрахована залежність $M_s(x)$ для даної моделі компенсації заряду титану в підгратці марганцю. Зміни залежності намагніченості насичен-

Рис. 10. а — Експериментальна (трикутники – дана робота, круги – [26]) і розрахункова (безперервна лінія) залежності намагніченості насичення в магнітному полі 1.2 МА/м; б — частка Mn^{4+} у матеріалах системи $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_3$ і область існування феромагнітної фази.

ня, що спостерігалися, пояснюються тим, що при малих x протікають два конкуруючі процеси: збільшення M_s через зменшення величини δ (тобто збільшення вмісту магнітних йонів марганцю в елементарній комірці) і зменшення M_s через заміщення магнітного Mn⁴⁺ немагнітним Ti⁴⁺. При великих x переважає останній процес і намагніченість насичення швидко зменшується.

Нами був проведений аналіз залежності частки Mn⁴⁺ у загальній кількості марганцю С_{Мп⁴⁺} від концентрації титану. Як видно з рис. 10, у випадки реалізації модельних рівнянь (8) і (17) феромагнітна фаза повинна залишатися стабільною до $x \sim 0.17$, що узгоджується з даними феромагнітного резонансу. При цьому зі збільшенням концентрації титану слід чекати тільки відносно слабої зміни точки Кюрі за рахунок зменшення кількості магнітоактивних йонів у найближчому оточенні йонів марганцю, що узгоджується з експериментальними даними. Слід також зазначити, що у випадку реалізації запропонованої моделі компенсації заряду титану стає зрозумілим поведінка структурних і магнітних параметрів, описана в роботі [19]. У цій роботі було показано, що манганіти (La,Sr) $Mn_{1-x}Ti_xO_{3\pm\delta}$ є феромагнітними, а намагніченість насичення залишається досить високою (~2 µВ на атом марганцю), аж до x=0.3.

На основі аналізу залежності об'єму елементарної комірки, міжйонних відстаней Мп–О, кривих намагніченості насичення і спектрів феромагнітного резонансу систем $La_{0.7}Sr_{0.3}Mn_{1-x}M_x$ - $O_{3\pm\delta}$ (де М — Си, Fe, Cr, Ti) від x було встановлено, що марганець заміщується міддю згідно з моделлю $2Mn^{3+} \rightarrow Mn^{4+} + Cu^{2+}$, де мідь знаходиться у валентному стані 2+. Компенсація заряду при заміщенні марганцю залізом у системі $La_{0.7}Sr_{0.3}Mn_{1-x}Fe_xO_{3\pm\delta}$ може бути описана моделлю $Mn^{3+} \rightarrow$ Fe³⁺. В той же час заміщення марганцю хромом у системі $La_{0.7}Sr_{0.3}Mn_{1-x}Cr_xO_{3\pm\delta}$ можна описати моделлю $Mn^{3+} \rightarrow Cr^{3+}$, проте також можлива модель $2Mn^{3+} \rightarrow$ $Mn^{4+} + Cr^{2+}$, якщо припустити, що хром приймає участь у подвійному обміні. Заміщення марганцю титаном у системі $La_{0.7}Sr_{0.3}Mn_{1-x}Ti_xO_{3\pm\delta}$ описується моделлю $Mn^{4+} \rightarrow Ti^{4+}$ з одночасним зменшенням кисневої нестехіометрії δ при збільшенні *x*.

РЕЗЮМЕ. Построены экспериментальные зависимости объема элементарной ячейки твердых растворов на основе манганита лантана, в котором марганец замещали *d*-металлами (Cu, Fe, Cr, Ti), от содержания примеси и теоретические кривые, вычисленные для разных моделей компенсации заряда, которые можно допустить при замещении марганца. На основе полученных данных, а также кривых намагниченности насыщения и спектров ферромагнитного резонанса сделаны выводы о наиболее достоверных моделях компенсации заряда примеси.

SUMMARY. Experimental dependences of unit cell volume of solid solutions based on lanthanum manganite, in which *d*-metals (Cu, Fe, Cr, Ti) substituted for manganese, on dopants content have been graphed, and compared with calculated curves for different models of charge compensation of manganese-substituted dopants. Such comparison, as well as saturation magnetization curves and ferromagnetic resonance spectra allows the most reliable models of charge compensation of introduced dopants to be determined.

- 1. Helmolt R., Wecker J., Samwer K. et al. // J. Appl. Phys. -1994. -76, № 10. -P. 6925-6928.
- Haghiri-Gosnet A.-M., Renard J.-P. // J. Phys. D: Appl. Phys. -2003. -36. -R127—R150.
- Pierre J., Nossov A., Vassiliev V., Ustinov V. // Phys. Lett. A. -1998. -250. -P. 435–438.
- 4. Rubinstein M., Gillespie D.J., Snyder E.J., Tritt M.T. // Phys. Rev. B. -1997. -56, № 9. -P. 5412-5423.
- Sun J.R., Rao G.H., Shen B.G., Wong H.K. // Appl. Phys. Lett. -1998. -73. -P. 2998.
- Turilli G., Licci F. // Phys. Rev. B. -1996. -54, № 18. -P. 13052—13057.
- Hebert S., Maignan A., Martin C., Raveau B. // Sol. St. Comm. -2002. -121. -P. 229—234.

- 8. Tikhonova I.R. Thes. for the degree of kand. chem. sciences. -Yekaterinburg, 1999.
- Ogale S.B., Sheekala R., Bathe Ravi et al. // Phys. Rev. B. -1998. -57. -P. 7841.
- Pissas M., Kallias G., Devlin E. et al. // J. Appl. Phys. -1997. -81. -P. 5770.
- Jian-Wang Cai, Cong Wang, Bao-Shen et al. // Appl. Phys. Lett. -1997. -71, № 12. -P. 1727.
- Righi L., Gorria P., Insausti M. et al. // J. Appl. Phys. -1997. -81. -P. 5767.
- Ghosh K., Ogale S.B., Ramesh R. et al. // Phys. Rev. B. -1999. -59, № 1. -P. 533.
- Kallel N., Dhahri J., Zemni S. et al. // Phys. Stat. Sol. -2001. -184. -P. 319—325.
- 15. Troyanchuk I.O., Bushinsky M.V., Szymczak H. et al. // Eur. Phys. J. -2002. -B28. -P. 75.
- Hu J., Qin H., Chen J., Wang Z. // Mat. Sci. Eng. -2002. -B90. -P. 146.
- 17. Sahana M., Dorr K., Doerr M. et al. // J. Magn. and Magn. Mater. -2002. -213, № 3. -P. 253.
- Hideki Taguchi, Masanori Sonoda, Mahiko Nagao, Hiroyasu Kido // J. Sol. St. Chem. -1996. -126, № 2. -P. 235.
- Kallel N., Dezanneau G., Dhahn J. et al. // J. Mag. Mater. -2003. -261. -P. 56.
- 20. Боровских Л.В., Мазо Г.А., Иванов В.М. // Вестн.

Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, Київ Інститут магнетизму НАН України, Київ Москов. ун-та. Сер. 2. Химия. -1999. -40, № 6. -С. 373.

- Ullmann H., Trofimenko N. // J. Alloys and Compounds. -2001. -316. -P. 153.
- 22. Shannon R.D. // Acta Cryst. -1976. -A32. -P. 751.
- 23. Abou-Ras D., Boujelben W., Cheikh-Rouhou A. et al. // J. Magn. and Magn. Mater. -2001. -233. -P. 147-154.
- 24. Dagotto E., Motta T., Moreo A. // Phys. Rep. -2001. -344. -P. 1—153.
- 25. Kamata H., Yonemura Y., Mizusaki J. et al. // J. Phys. Chem. Solids. -1995. -56, № 7. -P. 943.
- 26. Urushibara A., Moritomo Y., Arima T. et. al. // Phys. Rev. B. -1995. -51, № 20. -P. 14103-14109.
- 27. Akimoto T., Maruyama Y., Moritomo Y., Nakamura A. // Ibid. -1998. -57, № 10. -P. 5594—5597.
- Budak S., Ozdemir M., Aktas B. // Physica B. -2003.
 -339. -P. 45—50.
- Rivadulla F., Hueso L.E., Jardon C. et al. // J. Magn. and Magn. Mater. -1999. -196–197. -P. 470– 472.
- 30. Gross R., Aleff L., Bucher B. et. al. // J. Magn. and Magn. Mater. -2000. -211, № 1-3. -P. 150-159.
- Mizusaki J., Mori N., Takai H. et al. // Solid State Ionics. -2000. -129. -P. 163.
- Nowotny J., Rekas M. // J. Amer. Ceram. Soc. -1998.
 -81. -P. 67.

Надійшла 06.10.2008