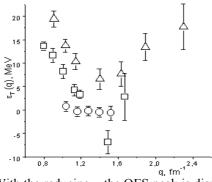
## ENERGY POSITION OF MAXIMA IN RESPONSE FUNCTIONS OF $^{2}$ H NUCLEUS WITH q = 1 - 1,5 fm $^{-1}$

## A. Yu. Buki, N.G. Shevchenko, I.A. Nenko, A.A. Khomich

National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine

## S.A. Pashchuk, I.G. Evseev


Centro Federal de Educação Tecnologica do Parana de Curitiba (CEFET-PR), Brazil

The problem of measuring a quasielastic electron scattering peak energy on nuclei is discussed. PACS: 25.30.Fj, 27.10.+h

The energy of a peak maximum in quasielastic electron scattering (QES) on nuclear nucleons is designated as  $\varepsilon$  and is measured from the energy of elastic electron scattering on the nucleon with the same transfer 3-momenta q, that corresponds to a maximum of this peak. The theoretical works [1,2] and some others show that the calculation of  $\varepsilon(q)$  depends on the choice of a nucleon potential type. Some of calculated  $\varepsilon(q)$  functions have a minimum for  $q < 1.5 \text{ fm}^{-1}$ , where some minimum in data of  $\varepsilon$  measurements on the  $\varepsilon^{12}$ C nucleus [3] is observed too. But the result interpretation of such data in the aspect of [1,2] is faced with two difficulties:

I. Originally the experimental  $\varepsilon$  were defined from dependencies of twice differential cross sections  $d^2\sigma$  on the transfer energy  $\omega$  (values  $\varepsilon$  obtained by this way we designate as  $\varepsilon_{\sigma}$ ). This cross section is a sum of longitudinal  $R_{\perp}$  and transverse  $R_{\perp}$  response functions:

 $d^2\sigma \cong \sigma_{\rm M}(G(q))^2\{R_{\rm L}(q,\omega)+[0.5+tg(\theta/2)]R_{\rm T}(q,\omega)\},$  where  $\sigma_{\rm M}$  is the Mott cross section, G(q) is the proton electric form factor,  $\theta$  is the angle of electron scattering. It was showed (e.g., see [2]) that  $\varepsilon_{\rm L}$ , corresponding to the  $R_{\rm L}$ -function and  $\varepsilon_{\rm T}-R_{\rm T}$ -function, are unequal. So, according to the equation for  $d^2\sigma$ , the value  $\varepsilon_{\sigma}$  is in the interval  $\varepsilon_{\rm L}-\varepsilon_{\rm T}$  and the result of the  $\varepsilon_{\sigma}$  measurement depends on the choice of the angle  $\theta$ .



II. With the reducing q the QES peak is displaced on  $\omega$  into the area of excitation of nuclear bound states (NBS), such as giant resonances, and then the experimental  $\varepsilon$  correspond to the sum peak maximum of nuclear electrodisintegration but it is not a peak of QES described by theoretical calculations.

The experiment has shown that really  $\varepsilon_L \neq \varepsilon_T$  [4], and the dependence of  $\varepsilon_T$  on q at  $q \le 1.3$  fm<sup>-1</sup> is completely described by the calculation in which the function  $\varepsilon(q)$  is specified by NBS excitation [5,6]. Analysis of these results in view of the giant resonance systematic leads to

the conclusion, that for small transfer momentum the measurement of  $\varepsilon_L$  and  $\varepsilon_T$ , which characterize QES, is rather difficult. The <sup>2</sup>H nucleus is interesting because it has no excitation states and thus there is a possibility to study  $\varepsilon$  of QES at small q experimentally.

In the present paper we use the results of measurement of the  $R_L$ - and  $R_T$ -functions of the  $^2H$  nucleus at the linac LUE-300 KIPT and obtain the  $\varepsilon$  values for q=1-1.5 fm $^-$ ! We have determined for the  $^2H$  nucleus  $\varepsilon_L - \varepsilon_T \approx 1$  MeV. The obtained  $\varepsilon_T$  values are shown in the figure by circles. Also, for comparison, on the figure the  $\varepsilon_T$ -data from [5] and [6] for  $^6Li$  (triangles) and  $^4He$  (squares) respectively are quoted. One can see that at q < 1.5 fm $^{-1}$  for  $\varepsilon$  of the  $^2H$  nucleus there is no the dependence on q, that is character for  $\varepsilon$  of other nuclei. This difference in the behavior of dependences of  $\varepsilon$  on q is a confirmation of NBS role in shaping the maximum peak of nuclear electrodisintegation.

So obtained experimental  $\varepsilon$  of the <sup>2</sup>H nucleus allow extending an area of the calculations checking of a peak QES energy position at q less than 1.5 fm<sup>-1</sup>.

The work was fulfilled according to the treaty of cooperation between NSC KIPT and CEFET-PR: "Acordo de cooperacao entre o Instituto de Fisica e Tecnologia de Kharkov (Ucraina) e o Centro Federal de Educacao Tecnologica do Parana de Curitiba (CEFET-PR)" from October 21, 1998.

## REFERENCES

- 1. R. Rosenfelder. On the shift of the quasielastic peak in inelastic electron scattering // *Phys. Lett.* 1978, v. 79B, p. 15-18.
- 2. A.Yu. Korchin, A.V. Shebeco. Quasifree peak parameters and sum rules for electron scattering on <sup>4</sup>He // *Z. Phys.* 1981, v. A299, p. 131-137.
- 3. A.Yu. Buki et al. Investigation quasielastic electron scattering on <sup>12</sup>C nucleus // *Ukr. Fiz. Zhurn.* 1983, v. 28, p. 1654-1657 (in Russian).
- 4. A.Yu. Buki et al. Quasielastic elektron scattering on <sup>4</sup>He, <sup>12</sup>C nuclei and twobody interechion of nucleons // *Yad. Fiz.* 1984, v. 39, p. 1323-1325 (in Russian).
- **5.** A.Yu. Buki et al. Energy peak in electron quasielastic scattering on <sup>6</sup>Li // *Yad. Fiz.* 1988, v. 48. p. 913-916 (in Russian).
  - 6. A.Yu. Buki et al. Energy position of the <sup>4</sup>He electrodisintegration maximum for small transfer momenta // *Ukr. Fiz. Zhurn*. 1995, v. 40, p. 913-915 (in Ukr.).