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The parallel momentum correction technique is generalized for relativistic approach. It is required for proper
calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is
shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without
calculation of the distribution function if the relativistic monoenergetic transport coefficients are already known,
while the latter can be calculated by any non-relativistic solver.
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INTRODUCTION

Since the fusion reactor scenarios require high
temperatures, the role of relativistic effects for electrons
in toroidal devices also becomes an actual question. In
particular, the relativistic effects in the transport
processes need to be examined for the next generation
of such devices as ITER and DEMO [1, 2], where the
expected electron temperatures are sufficiently high,
T. > 25keV. Apart from this, the aneutronic fusion
reactors with D—*He, D — D and p—**E reactions
require actually relativistic temperatures of up to
T. ~ 100 keV [3, 4]. It was already shown [5, 6] that
relativistic effects in electron transport can be non-
negligible in the range of electron temperatures typical
for fusion. In the previous publications [6, 11, 12] the
relativistic approach has been developed mainly for
radial neoclassical transport. However, the account of
relativistic effects is much more important for parallel
neoclassical fluxes since there is no anomalous transport
along the magnetic surfaces and neoclassical fluxes are
in good agreement with experiment.

The standard technique for solving drift Kinetic
equation (DKE) includes the expansion of the
distribution function in Sonine (associated Laguerre)
polynomials L' (x) [7-10]. In relativistic approach,
due to the additional relativistic term in right-hand-side
(RHS) of DKE, the standard technique with Sonine
polynomials L/ (x) becomes inefficient, and the
generalization of this technique for arbitrary
temperatures is proposed in this paper.

1. RELATIVISTIC DRIFT KINETIC
EQUATION

Generally, relativistic consideration at fusion
temperatures only for electrons is required. However,
for convenience, below we consider all species and
distinguish between electrons and ions only when it is
necessary.

It was shown before [6, 11, 12] that the relativistic
DKE (rDKE) for neoclassical electron transport can be
written as:

V() - €ing) = —p A+ (x =3 - R) 4 ) Ry +

+E’V|A2Fe:-:ja 1)
where f; is the disturbance of the electron distribution
function driven by the thermodynamic forces 4;, V' is
the relativistic Vlasov operator,
CEf) = Ea{fea [.@JFE;-:-U] + 6L [E;-:-Uuﬁ:]} is the
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relativistic linearized Coulomb operator [13] (here,
Ggp =1and 6,5 =0 if b # &), p = Vg - Vo where g is
the flux-surface label, = =m.c®(y —1)/T. is the
normalized kinetic energy of the electrons with
wr=m.c’/T,, vy =uyfy with u=p/m.. and
b= E/fE, is the magnetic field normalized by its
reference value. The thermodynamic forces in RHS of
Eq. (1) are defined as
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where p, = n.T; is the thermodynamic pressure, E is
the inductive electric field, and prime means d/dg.
Note that in contrast to definitions used in [6, 11, 12],
the term X is not included in the thermodynamic force.
Instead, in Eqg. (1) only the standard definition is
applied.

The additional term in the RHS of Eq. (1) with
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appears due to specific features of F;, and K,(x) is
the modified Bessel function of the second kind of n-th
order.

The electron equilibrium is given by the Juttner-
Maxwellian distribution function 7, [13, 14]
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where y = (1 +u®/c*)*/? is the Lorentz factor and
Uy, = Pep /M, IS the thermal momentum per unit mass
with g, = (2m.T.)*%. The Maxwellian is normalized
by density, | d*u F.,; = n,, and
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The ion distribution function, F;;, is considered as non-
relativistic Maxwellian one.

2. MOMENT EQUATIONS FOR PARALLEL
FLUXES CALCULATION

In the moment-equation method for the parallel
neoclassical fluxes calculation [8-10], the non-
relativistic distribution function was expanded by
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Sonine polynomials L;!!"::'{x], and its zeroth and first
moments gave the parallel fluxes of particles, I;, and
heat, g.y, respectively. However, the relation between
fluxes of the heat, the energy and particles in the
relativistic approach differs from the classical one [7] by
the additional relativistic term [6, 11], and

qczgc—(f-r-:tt) T.I. (6)
where [, = [duwf and
Q.= [d*uvm,c®(y—-1)f. are the fluxes of
particles and energy, respectively. Since the expression
for the relativistic heat flux was derived in [6, 11] only
phenomenologically, the rigorous derivation of Eq. (6)
is given in the Appendix.

From Eq. (1) with A; = 0 one can easily recognize
that, in contrast to the non-relativistic approach {c —
and & =0), the expan5|on of RHS with the Sonine
polynomials L"" {x) cannot be represented by only
zeroth and f|rst terms. However if the generalized
Laguerre polynomials L {x] with & = 3/2+ R are
chosen the standard procedure can be applied. Here,

(.r]—l L, “(x) = a +1 —x etc. [15]. The use of

L, {x] is perfectly applicable also for the
representation of the heat flux, given by Eq. (6).

Following [10], let us introduce the parallel-flow-

velocity moments,
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Then the moment with i = 0 can be identified with the
parallel flow velocity or flux of particles, n,V§ =
= [d*uwyf, =TF, while the moment with i =1 is
related to the parallel heat flux, n,V' =
= [d?ur,(5/2 + R —x) = —gf/T,.

Representing f, as the Legendre polynomials series
and taking into account that only the first Legendre
harmonic contributes in parallel fluxes one can replace
f, with £f,;, where F=- and fi; =

= (3/2) J’_Tdf ££.. Solution of Eq. (1) can be sought
as fz = £f;, with the series
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where w{x) is the weight function. Direct substitution
of Eq. (8) into Eq. (7) gives
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Here it is taken into account that
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Find that in the case ¢ — =2, i.e. withw =1and R = 0,
the expressions (8-10) perfectly coincide with the non-
relativistic formulas given in [10].

For calculation of neoclassical parallel fluxes,
collision operator with parallel momentum conservation
can be approximated as [8]

Cop(f) = vERGOLIE) + FICER(E, ) + vER (W) £y
(12)

and C(f,, ) = ¥, C£8(f., ) can also be sought as series

CE(fur) = 20 wl) Fuagy () T FF LT G, (19)
with the parallel collisional friction forces
ngFf; = | d® u gl {xj *

= E:i;-'['f-_ [fr:l* i:-:-z‘j] + Ecafﬁ[ﬁmwﬁu]}- (14)

Taking Eg. (8) into account, one can see that the
integrals in Eq. (13) are well defined and can be
calculated directly through the parallel fluxes as
F& = T14c7VE [8 — 10]. The coefficients ¢ can be
easily calculated and they are not shown here due to its
cumbersomeness.

Now, following [8],
monoenergetic rDKE,

Vigz)+v5Llgs) =

with the solution which gives the mono- energetic

transport coefficients. Here, £ = —; (1-72 ]— is the

Lorentz operator, v&(u) = X, vE¥(u) is the deflection
frequency and f; is the characteristic spatial scale.
Then, applying the operation ([ d*ufiL™ ..} to
Eq. (15), where f; = £, /Fyy; and (...} is the averaging
over the magnetic flux surface, and using then the
adjoint properties of the Vlasov and collision operators,
one can obtain the following:
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let us introduce the adjoint

'E“'| aMj, (15)
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Here, the Onsager symmetry, D, = —D,-, is used,
and D,.. are the relativistic mono-energetic coefficients

[12]. The operation of the energy convolution with the
relativistic Maxwellian is defined as

Lo(x)]; (17)
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One can see that this system of algebraic equations
with respect to the parallel fluxes can be easily solved if
the mono-energetic transport coefficients are already
calculated. If the series in Eq. (8) and Eq. (13) are cut
off with only first two terms taken into account (i.e.
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with i = 0,1), then the heat and particles fluxes are

directly defined.

SUMMARY

In this paper, the moment-equation technique,
previously developed for non-relativistic plasmas
[8-10], is generalized to use in the relativistic approach.
It opens a possibility to apply the neoclassical transport
theory at arbitrary temperatures. It is shown that the
obtained system of linear algebraic equations for

I.—E -
parallel (bVE) == and {BVi) =

Ng
= —gf /n.T;, can be solved directly without calculation
of the distribution function if the monoenergetic
transport coefficients are already known. Note, that the
relativistic monoenergetic transport coefficients can be
calculated by any non-relativistic solver [12].

APPENDIX: DERIVATION OF THE
RELATIVISTIC HEAT FLUX IN THE
COVARIANT FORMULATION

It is shown that the definition of the relativistic heat
flux introduced in Eqg. (6) and [6, 11] conforms well
with the definition accepted in the relativistic Kkinetics,
based on the covariant formalism [14].

In the relativistic covariant formalism, all values
required for transport equations (in particular, the
energy, as well as fluxes of particles, the energy and the
heat) are usually defined with the help of the four-vector
of the particle flow,

fluxes,

NT = £e e (2, p) Al
NE=]rpt flepl (A1)
and the four-tensor of the energy-momentum,
d3
T =c [ ppPf(x.p), (A2)

where p° = (m%e® + p¥)*? and @ f =0.1.2.3 (we
do not consider the moments of higher order). Note that
T% naturally contains the rest energy and its flow,
while the transport equations do not require these
values. Since v = cp/p", the spatial flow of particles is
ri=nfwith i = 1,2.3. 4, while the time-like flow is
related to the density as ¥® = cn. The internal energy
enclosed in the electron distribution function can be
expressed from the energy-momentum tensor as

W, =T" —n_m.c?, which for the relativistic
Maxwellian is
T T Hz
T =n,T, (.urR: 1). (A3)
Now, one can easily prove that W, = n. T, (3 + L?E) with

R given by Eq. (3). _
In a similar way, the spatial energy flux, @*, and the

heat flux, g*, can be calculated [14],
Q= eT® —m eI, (Ada)

g'=eT™ — T, (A4b)
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. il
where ¢T™ is the total energy flow and h, = 'T+

+T. is the enthalpy of electrons, that for the relativistic
Maxwellian is h, = m.c?Kz/K; [15]. The heat flux,
Eq. (A4b), can be written as
i i L3
g =0¢ —u (2 -1)TI,

(A5)

and, finally, using the definition of ® given by Eq. (3),
one can easily obtain Eq. (6).
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PEJATUBUCTCKHUE D2O®PEKTHI B HEOKJACCUYECKOM NEPEHOCE 3JIEKTPOHOB
HU. Mapywenxo, H.A. Azapenkos

[MpennoxkeHo 0000IIeHHEe METOJa COXPAaHEHMs MapaUIebHBIX MMIIYJIBCOB Ha CIIy4dyaidl pelsSTHBHCTCKOTO
NpUOIMKEHUs. ITO HEOOXOANMO JUIsi KOPPEKTHOTO BBIYMCICHUS MapajuleNIbHBIX HEOKJIACCHYECKHX MOTOKOB M, B
YaCTHOCTH, OyTCTpEI-ToKa P TeMIIepaTypax, KOTOpble TPEOYIOTCS ISl OCYLIECTBIICHHS! TEPMOSAEPHOTO CHHTE3A.
[TokazaHo, YTO TONydYeHHAss CHCTEMa JIMHEWHBIX aire0panvyeckux ypaBHEHHH MOXET OBbITh pelieHa
HETIOCPEACTBEHHO, 0€3  BBIYMCICHHSA  (QYHKIUHM  PACHpPEACICHUsS, ©CIM  HM3BECTHBI  PEIATHBHCTCKHE
MOHOHEPreTHdecKre Ko3(G(GHUINUCHTHI, TPUIEM IMOCICIHUE MOTYT OBITh BBIYHCICHBI JIIOOBIM HEPEISITHUBHCTCKUM
COJIBEPOM ITyTEM IIepe0O03HAUECHHS BEINYNH, BXOIAIMUX B OpeiihoBO-KHHETHIECKOE YPaBHEHHE.

PEJISITUBICTCBKI E®OEKTU B HEOKJIACUYHOMY NEPEHECEHHI EJIEKTPOHIB
1. Mapywenko, M.O. A3apenkoe

3anporoHOBaHO y3aralbHEHHS METOAY 30epeKCHHS MapajelbHUX IMITYyJIhCIB Ha BHIAIOK PEIATHBICTCHKOTO
HaOmokeHHs. Lle HEOOXimHO I KOPEKTHOro OOYMCIIEHHS MapalelbHUX HEOKJIACHYHHX ITOTOKIB i, 30KpeMma,
OyTCTpern-CTpyMy 3a TeMIepaTyp, SKi MOTpiOHI A 3AiCHEHHS TepMosIepHOro cuHTe3y. [lokazaHo, mo 3100yTy
cUCTEeMY JTiHIHHNX anrebpaldHuX piBHAHb MOXKHA pO3B’s3aTH Oe3rmocepenHpo, 6e3 o0urciaeHHs QYHKIII po3noainy,
SIKIIIO BiIOMI PENSATHBICTCHKI MOHOCHEPTETHYHI KOe(IIlieHTH, MPHYOMY OCTaHHI MOXYTh OyTH OOYHCICHI OyIb-
SKAM HEpEJSATHBICTCHKIM COJIBEPOM IIUISIXOM IIEPEIIO3HAYCHHS BEJIMYHUH, IO BXOIATH A0 Ipeii(hOBO-KIHETHYHOTO
PIBHSIHHSL.
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