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RELATIVISTIC EFFECTS IN ELECTRON 

 NEOCLASSICAL TRANSPORT 

I. Marushchenko, N.A. Azarenkov 
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The parallel momentum correction technique is generalized for relativistic approach. It is required for proper 

calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is 

shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without 

calculation of the distribution function if the relativistic monoenergetic transport coefficients are already known, 

while the latter can be calculated by any non-relativistic solver. 
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INTRODUCTION 

Since the fusion reactor scenarios require high 

temperatures, the role of relativistic effects for electrons 

in toroidal devices also becomes an actual question. In 

particular, the relativistic effects in the transport 

processes need to be examined for the next generation 

of such devices as ITER and DEMO [1, 2], where the 

expected electron temperatures are sufficiently high,  

 > 25 keV. Apart from this, the aneutronic fusion 

reactors with ,  and  reactions 

require actually relativistic temperatures of up to  

 ~ 100 keV [3, 4]. It was already shown [5, 6] that 

relativistic effects in electron transport can be non-

negligible in the range of electron temperatures typical 

for fusion. In the previous publications [6, 11, 12] the 

relativistic approach has been developed mainly for 

radial neoclassical transport. However, the account of 

relativistic effects is much more important for parallel 

neoclassical fluxes since there is no anomalous transport 

along the magnetic surfaces and neoclassical fluxes are 

in good agreement with experiment. 

The standard technique for solving drift kinetic 

equation (DKE) includes the expansion of the 

distribution function in Sonine (associated Laguerre) 

polynomials  [7-10]. In relativistic approach, 

due to the additional relativistic term in right-hand-side 

(RHS) of DKE, the standard technique with Sonine 

polynomials  becomes inefficient, and the 

generalization of this technique for arbitrary 

temperatures is proposed in this paper. 

1. RELATIVISTIC DRIFT KINETIC 

EQUATION 

     Generally, relativistic consideration at fusion 

temperatures only for electrons is required. However, 

for convenience, below we consider all species and 

distinguish between electrons and ions only when it is 

necessary. 

It was shown before [6, 11, 12] that the relativistic 

DKE (rDKE) for neoclassical electron transport can be 

written as: 

 
               (1) 

where  is the disturbance of the electron distribution 

function driven by the thermodynamic forces ,  is 

the relativistic Vlasov operator, 

 is the 

relativistic linearized Coulomb operator [13] (here, 

 and  if ),  = Vdr  where  is 

the flux-surface label,  is the 

normalized kinetic energy of the electrons with 

,  with  and 

 is the magnetic field normalized by its 

reference value. The thermodynamic forces in RHS of 

Eq. (1) are defined as 
 

 

 

    
(2) 

 

where  is the thermodynamic pressure,  is 

the inductive electric field, and prime means . 

Note that in contrast to definitions used in [6, 11, 12], 

the term  is not included in the thermodynamic force. 

Instead, in Eq. (1) only the standard definition is 

applied. 

The additional term in the RHS of Eq. (1) with 
 

 

(3) 
 

appears due to specific features of , and  is 

the modified Bessel function of the second kind of n-th 

order. 

The electron equilibrium is given by the Juttner-

Maxwellian distribution function  [13, 14] 
 

   (4) 

 

where  is the Lorentz factor and 

 is the thermal momentum per unit mass 

with . The Maxwellian is normalized 

by density, , and 
 

  (5) 

 

The ion distribution function, , is considered as non- 

relativistic Maxwellian one.  

2. MOMENT EQUATIONS FOR PARALLEL 

FLUXES CALCULATION 

In the moment-equation method for the parallel 

neoclassical fluxes calculation [8-10], the non-

relativistic distribution function was expanded by 



 

40                                                                                                             ISSN 1562-6016. ВАНТ. 2015. №1(95) 

Sonine polynomials , and its zeroth and first 

moments gave the parallel fluxes of particles, , and 

heat, , respectively. However, the relation between 

fluxes of the heat, the energy and particles in the 

relativistic approach differs from the classical one [7] by 

the additional relativistic term [6, 11], and  

 

      (6) 

 

where  and 

 are the fluxes of 

particles and energy, respectively. Since the expression 

for the relativistic heat flux was derived in [6, 11] only 

phenomenologically, the rigorous derivation of Eq. (6) 

is given in the Appendix. 

From Eq. (1) with  one can easily recognize 

that, in contrast to the non-relativistic approach  

and ), the expansion of RHS with the Sonine 

polynomials  cannot be represented by only 

zeroth and first terms. However, if the generalized 

Laguerre polynomials  with  are 

chosen, the standard procedure can be applied. Here, 

, , etc. [15]. The use of 

 is perfectly applicable also for the 

representation of the heat flux, given by Eq. (6).  

Following [10], let us introduce the parallel-flow-

velocity moments, 
 

     (7) 
 

Then the moment with  can be identified with the 

parallel flow velocity or flux of particles,  
, while the moment with  is 

related to the parallel heat flux,  
. 

Representing fa as the Legendre polynomials series 

and taking into account that only the first Legendre 

harmonic contributes in parallel fluxes, one can replace 

fa with , where  and  

. Solution of Eq. (1) can be sought 

as  with the series 
 

    (8) 

 

where  is the weight function. Direct substitution 

of Eq. (8) into Eq. (7) gives 
 

               (9) 

 

(  when ) and  
 

      (10) 

Here it is taken into account that 
 

   (11) 

 

Find that in the case , i.e. with  and , 

the expressions (8-10) perfectly coincide with the non-

relativistic formulas given in [10].  

For calculation of neoclassical parallel fluxes, 

collision operator with parallel momentum conservation 

can be approximated as [8] 
 

   

(12) 
 

and  can also be sought as series 
 

      (13) 

 

with the parallel collisional friction forces 
 

 
.   (14) 

 

Taking Eq. (8) into account, one can see that the 

integrals in Eq. (13) are well defined and can be 

calculated directly through the parallel fluxes as 

 [8 – 10]. The coefficients  can be 

easily calculated and they are not shown here due to its 

cumbersomeness. 

Now, following [8], let us introduce the adjoint 

monoenergetic rDKE,  
 

,    (15) 

 

with the solution which gives the mono-energetic 

transport coefficients. Here,  is the 

Lorentz operator,  is the deflection 

frequency and  is the characteristic spatial scale. 

Then, applying the operation  to  

Eq. (15), where  and  is the averaging 

over the magnetic flux surface, and using then the 

adjoint properties of the Vlasov and collision operators, 

one can obtain the following: 
 

 

 
.  

(16) 
 

Here, the Onsager symmetry, , is used, 

and  are the relativistic mono-energetic coefficients 

[12]. The operation of the energy convolution with the 

relativistic Maxwellian is defined as 
 

  (17) 

One can see that this system of algebraic equations 

with respect to the parallel fluxes can be easily solved if 

the mono-energetic transport coefficients are already 

calculated. If the series in Eq. (8) and Eq. (13) are cut 

off with only first two terms taken into account (i.e. 
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with ), then the heat and particles fluxes are 

directly defined. 

SUMMARY 

In this paper, the moment-equation technique, 

previously developed for non-relativistic plasmas       

[8-10], is generalized to use in the relativistic approach. 

It opens a possibility to apply the neoclassical transport 

theory at arbitrary temperatures. It is shown that the 

obtained system of linear algebraic equations for 

parallel fluxes,  and  

, can be solved directly without calculation 

of the distribution function if the monoenergetic 

transport coefficients are already known. Note, that the 

relativistic monoenergetic transport coefficients can be 

calculated by any non-relativistic solver [12]. 

APPENDIX: DERIVATION OF THE 

RELATIVISTIC HEAT FLUX IN THE 

COVARIANT FORMULATION 

It is shown that the definition of the relativistic heat 

flux introduced in Eq. (6) and [6, 11] conforms well 

with the definition accepted in the relativistic kinetics, 

based on the covariant formalism [14].  

In the relativistic covariant formalism, all values 

required for transport equations (in particular, the 

energy, as well as fluxes of particles, the energy and the 

heat) are usually defined with the help of the four-vector 

of the particle flow, 
 

      (A1) 

 

and the four-tensor of the energy-momentum, 
 

,     (A2) 

 

where  and  (we 

do not consider the moments of higher order). Note that 

 naturally contains the rest energy and its flow, 

while the transport equations do not require these 

values. Since , the spatial flow of particles is 

 with , while the time-like flow is 

related to the density as . The internal energy 

enclosed in the electron distribution function can be 

expressed from the energy-momentum tensor as 

, which for the relativistic 

Maxwellian is 
 

.    (A3) 

 

Now, one can easily prove that  with 

 given by Eq. (3). 

     In a similar way, the spatial energy flux, , and the 

heat flux, , can be calculated [14], 
 

,                   (A4a) 
 

,                         (A4b) 
 

where  is the total energy flow and  

 is the enthalpy of electrons, that for the relativistic 

Maxwellian is  [15]. The heat flux,  

Eq. (A4b), can be written as  
 

              (A5) 

 

and, finally, using the definition of  given by Eq. (3), 

one can easily obtain Eq. (6). 
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РЕЛЯТИВИСТСКИЕ ЭФФЕКТЫ В НЕОКЛАССИЧЕСКОМ ПЕРЕНОСЕ ЭЛЕКТРОНОВ 
 

И. Марущенко, Н.А. Азаренков 
 

Предложено обобщение метода сохранения параллельных импульсов на случай релятивистского 

приближения. Это необходимо для корректного вычисления параллельных неоклассических потоков и, в 

частности, бутстреп-тока при температурах, которые требуются для осуществления термоядерного синтеза. 

Показано, что полученная система линейных алгебраических уравнений может быть решена 

непосредственно, без вычисления функции распределения, если известны релятивистские 

моноэнергетические коэффициенты, причем последние могут быть вычислены любым нерелятивистским 

солвером путём переобозначения величин, входящих в дрейфово-кинетическое уравнение. 

 

РЕЛЯТИВІСТСЬКІ ЕФЕКТИ В НЕОКЛАСИЧНОМУ ПЕРЕНЕСЕННІ ЕЛЕКТРОНІВ 
 

І. Марущенко, М.О. Азарєнков
 

 

Запропоновано узагальнення методу збереження паралельних імпульсів на випадок релятивістського 

наближення. Це необхідно для коректного обчислення паралельних неокласичних потоків і, зокрема, 

бутстреп-струму за температур, які потрібні для здійснення термоядерного синтезу. Показано, що здобуту 

систему лінійних алгебраїчних рівнянь можна розв’язати безпосередньо, без обчислення функції розподілу, 

якщо відомі релятивістські моноенергетичні коефіцієнти, причому останні можуть бути обчислені будь-

яким нерелятивістським солвером шляхом перепозначення величин, що входять до дрейфово-кінетичного 

рівняння.

 


