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Analytical expressions of real and imaginary parts of the dielectric susceptibility of the electron gas with an
anisotropic velocity distribution are obtained within the quantum-field method. Energy losses of the projectile
charged particle in an electron gas are calculated in the cases of an isotropic velocity distribution of electron gas and
of the longitudinal motion in an medium with anisotropic temperature. The numerical results are confirmed by
analytical expressions in the low temperatures approximation.
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INTRODUCTION

Experimental studies in nuclear physics and
elementary particle physics is closely related to the use
of beams of charged particles. Almost always it’s very
important that beams involved in such experiments was
monochromatic and well collimated, i.e. they have a
small velocity spread or, in other words, the low
temperature. There are a lot of methods to cool the
beams. The method which allows produce beams of
heavy charged particles with a record small momentum
spread is electron cooling. Thus, for example, a cooled
by electrons beam of antiprotons with momentum
spread Ap/p ~ 10...5 is planned to use in the experiment
of researching of the strong interaction in collisions of
protons and antiprotons in HESR (High Energy Storage
Ring, Germany, FAIR Collaboration) [1].

A beam of heavy particles is mixed with the cold
electron gas at a straight section of the storage ring. Due
to Coulomb collisions the beam loses some of its heat
energy. Originally, the theory of pair Coulomb
collisions was used to describe the electron cooling [2-
4]. Later, this theory was supplemented by a dielectric
model which takes into account the collective effects at
large impact parameters. Total energy losses were
calculated by cross linking of results from both
approaches.

In the papers [5, 6] quantum field method was
proposed to describe energy losses of a massive charged
particle in an electron gas. The quantum field method is
more general and includes both the theory of binary
collisions and plasma method as special cases, and does
not use the phenomenological parameters.

The quantum field method allows to take into
account the influence of the temperature of the electron
gas on energy losses of a charged particle. The electrons
can have an isotropic or an anisotropic velocity
distribution. The last one is very important because
during of electron cooling the projectile particle slows
in the electron gas with anisotropic temperature which
is, matter-of-course, a consequence of acceleration of
electron gas (the Liouville's theorem).

An anisotropic velocity distribution of the electrons
is one of the main reasons of, so-called, fast electron
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cooling [4]. The effect of enhancing of energy transfer
from the stored beam of massive charged particles to the
electron gas is observed.

In this paper, the analytical expressions of the
dielectric susceptibility of the electron gas with
isotropic and anisotropic velocity distribution is
obtained. Calculations are made for the energy loss of
heavy charged particles in the approximation of low
temperature electron gas. Energy losses in the electron
gas with the temperature are numerically calculated.
The dependence of energy losses of the massive charged
particle on its velocity is presented. Numerical results
were compared with approximate expressions.

1. ISOTROPIC VELOCITY DISTRIBUTION
1.1. POLARIZATION OPERATOR

In the frame of the quantum-field theory energy
losses of the projectile particle in the electron gas is
determined by equation  (system of units:
m, =h = =1)[5]
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is an inverse temperature (thermal energy, &z = 1), M;
is a mass of projectile particle; @; is a momentum of
projectile particle; g is a wave vector; T(g.w) is a
polarization operator.
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The explicit form of the polarization operator
11(g. «) in the cases of a sufficiently tenuous plasma or
low-temperature high-density gas can be graphical
represented in the form of a loop (Fig. 1)

Fig. 1. The Feynman diagram of the polarization
operator in the one-loop approximation

Each solid line corresponds to the zero-particle
Green's function.
In the one-loop approximation the polarization

operator can be written as
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where 75 is a velocity distribution function.
We shall use the Maxwell distribution
n, = exp(~€,8). (8)
Dielectric susceptibility x(g. ) is related with the
polarization operator:

e
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From equation (1) it follows that for the
determination of the energy loss we need to know the
real and imaginary part of the polarization operator
(dielectric susceptibility).
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where g = qv. /s, W= w/ws, T=T./m.v2 are

dimensionless wave vector,
respectively.

To find the explicit form of the susceptibility one
uses the well known solution for the permittivity in the
one-dimensional case [7] and generalizes it to the 3-
dimensional form. As a result:_

frequency, temperature,
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1.2. LOW TEMPERATURE CASE

Let consider the case when the velocity of the
projectile particle is much higher than the average
thermal velocity of the electrons, V; > v.. One uses the
expansion for large values of the argument for function
looks like
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Polarization operator in the approximation of low
temperatures has the form
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The well-known in the classical approach expression
for the plasma permittivity is obtained by neglecting
quantum corrections.

C;;.'l‘ 4 &
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The ratio of permittivity and susceptibility is
elg. o) =1 — xlg, w). (13
At high speed of the projectile particles the
imaginary part rapidly tends to zero. It can be neglected.
Substituting equation (18) in equation (10) one can
obtain an expression for energy losses in the electron
gas in the approximation of low temperatures in the
second order on v /¥ :
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here the Coulomb logarithm is Le = —=22 —
where the Coulomb logarithm is L = (Mg + M) Rawp "

1.3. NUMERICAL CALCULATION

Compare the expression (19) with the results of the
numerical calculation of equation (10).
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Fig. 2. The dependence of energy losses of heavy
charged particles, the normalized by e* ez /5, in the
electron gas with the average thermal energy
T. =1&V on the speed. Speed is measured in units of
¥, = 10°cm/s. The solid line corresponds Eq. (19)

Results of numerical calculation of energy losses are
presented on Fig. 2. The solid line coresponds to the low
temperature approximation. Fig. 2 shows that results of
numerical calculations are well described by an
analytical expression (19) for sufficiently high velocities
of the projectile particle.
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Results of numerical calculation of energy losses of
heavy charged particles in the electron gas are presented
for different electron temperatures.
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Fig. 3. Energy losses of heavy charged particles, the
normalized by e®cs7 /¥, in the electron gas for
different electron isotropic temperatures
on the speed

Curves correspond results with next temperature of
electron gas: a) filled circles is T, = 1&V; b) open
triangles is T, =10"*&V; ¢) open circles is
T, = 1077&V; d) open squares is T, = 1077 V; ¢) filled
squares is T, = 10™% &V, Speed is measured in units of
Vy = 108cm/s.

The Fig. 3 shows that energy losses increase and
their maximum displaces toward lower velocities with
lowering of the temperature of the electron gas. An axis
of abscise is logarithm. The value of a plasma frequency
equal ez = 10%s7H[1].
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2. ANISOTROPIC VELOCITY
DISTRIBUTION
2.1. POLARIZATION OPERATOR
In the case of an anisotropic valocity distribution of
the electron gas it is convenient to introduce the concept
of the transverse and longitudinal temperature (velocity
spread): T., is a transverse temperature, T, is a
longitudinal temperature. If assume that these two
components are independent, then the distribution can
be written as [7].

E" E.r‘l
ny = ”P‘(TE Jexp = 20
Let choose an axis 0 along the direction of the
electron beam as a whole then
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Analytical expressions of the real part and imaginary
one of the dielectric susceptibility in the anisotropic
case are calculated in the same way to the isotropic
distribution:
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Equations (22) and (23) in the case of equal
transverse and longitudinal temperature 7, = 7, =1
reduce to equations (11) and (12), respectively.

2.2. LOW TEMPERATURE CASE

When the progectile particle moves with velocity ¥,
which significantly exceeds the average thermal
velocity of the electron gas one can expand the
expression (23) of the parameter v, 5,/V;.

ey, w) =
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Let obtain the energy loss of the projectile particle
moving along the direction of anisotropy by substituting
equation (26) into equation (10). With accurate to terms
of order w7, ; /¥ longitudinal losses are:
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2.3. NUMERICAL CALCULATION

By using equation (10) one can numerical calculate
the dependence of the longitudinal energy losses from
velocity of the projectile particle. Let compare obtained
results with equation (27) and with results of isotropic
velocity distribution.
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Fig. 4. The dependence of energy losses, normalized
by e*ei /V;, in the electron gas for different
longitudinal electron temperatures (anisotropy)
compared to their approximation Eq. (27) and to
isotropic electron velocity distribution

Points lines correspond to an isotropic distribution:
line with a) open squares is T, = 1&V; b) open circles is
T. = 107%eV; ¢) open triangles is T, = 1077V,

The solid lines correspond to the case with an
anisotropic velocity distribution: a) filled circles is
T, = 107%eV; Db) filled triangles is T, = 107%&V;
c) filled squares is T, = 10~ %&V. Long-dashed and
short-dashed lines correspond T, = 10~ *eV, Eq. (27)
and T, = 10™%&V, eq.(27), respectively.
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Transverse temperature is Tg, = 1&V. Speed is
measured in units of V, = 10%cm/s.

CONCLUSIONS

In the frame of the quantum field method it is
posible to consider the influence of electron gas
temperature on the energy loss of the massive charged
particle.

As consequence of acceleration of electron gas its
longitudinal temperature is significantly lower than
transverse one. The presence of a lower longitudinal
electron gas temperature in an anisotropic distribution
leads to a shift of the maximum of energy losses
compared to the isotropic case for the same values of
transverse temperature to the lower value of the
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BJUSIHUE AHU3OTPOIHOM TEMIIEPATYPBI JIEKTPOHHOI'O I'A3A HA SJHEPTETUYECKHUE
MMOTEPH 3APSA)KEHHOM YACTHIIHI B IVIA3BME

A.B. Xenemena, P.U. Xonooos

B pamkax KBaHTOBO-IIOJIEBOTO METO/A MOJIYYEHO aHAJIUTUUYECKOE BBIPAKEHUE ISl peaIbHOM MU MHUMOMW 4acTei
JARJIEKTPUYECKOM BOCIHPUUMYHUBOCTH D3JIEKTPOHHOIO Ta3a C aHM30TPOIHBIM pacnpeneneHueM. I[loacuuTaHbl
SHEPreTUUECKUEe NOTEPU MACCHBHOM 3apsKEHHOM YacTULbl B JJIEKTPOHHOM Tra3e B Cllydae M30TPOIHOTO
pacripenenenyss Mo CKOpPOCTSM M B cllydae JBM)KEHHMS HaJETAIOIIeH 4YacTUllbl B HAIPABJICHUM aHU3OTPOIUU.
PesynbTarhl YHCIEHHOrO cuYeTa 3HEPreTUYECKUX MOTEPh MNOATBEPKAAIOTCS AHATUTHYECKUMU pacyeTaMHu B
MPUOIIMKCHNN MaJIBIX TEMITEPaTyp.

BILJIMB AHI3OTPOITHOI TEMIIEPATYPH EJEKTPOHHOTI' O IT'A3Y HA EHEPTETUYHI BTPATH
3APSIDKEHOI YACTUHKMU B TLJIA3MI

O.B. Xenemensa, P.I. Xonoooes

VY paMkax KBaHTOBO-NIOJBOBOIO METOAY OTPHMAaHO aHAJIITHYHUII BUpa3 JUIs peayibHOI Ta YSBHOI YacTHH
JUEeNeKTPUYHOT CIIPUUHSTIMBOCTI €IEKTPOHHOI'O Ta3y 3 aHI30TPOIHUM PO3IMOJIIOM 3a MIBUAKOCTAMHU. [lingpaxoBaHo
SHepreTHYHI BTPATH MacHBHOI 3apsKEHO YaCTHHKH B €JIEKTPOHHOMY Ta3i y BUIAJIKY i30TPOIHOTO PO3IOUTY 3a
MIBUAKOCTSMH Ta Y BUIAAKy PyXy HajliTalo4oi YaCTWHKH B HampsMKy aHi3oTpomii. Pe3ympraté uncembHOTO
OOYHCIICHHSI EHEPTeTHYHMUX BTPAT MiATBEPKYIOThCA AaHANITHYHAMH pO3paxXyHKaMH B HaONMKEHHI Malux
TeMIepaTyp.
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