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     Analytical expressions of real and imaginary parts of the dielectric susceptibility of the electron gas with an 

anisotropic velocity distribution are obtained within the quantum-field method. Energy losses of the projectile 

charged particle in an electron gas are calculated in the cases of an isotropic velocity distribution of electron gas and 

of the longitudinal motion in an medium with anisotropic temperature. The numerical results are confirmed by 

analytical expressions in the low temperatures approximation. 
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INTRODUCTION 

Experimental studies in nuclear physics and 

elementary particle physics is closely related to the use 

of beams of charged particles. Almost always it’s very 

important that beams involved in such experiments was 

monochromatic and well collimated, i.e. they have a 

small velocity spread or, in other words, the low 

temperature. There are a lot of methods to cool the 

beams. The method which allows produce beams of 

heavy charged particles with a record small momentum 

spread is electron cooling. Thus, for example, a cooled 

by electrons beam of antiprotons with momentum 

spread Δp/p ~ 10…5 is planned to use in the experiment 

of researching of the strong interaction in collisions of 

protons and antiprotons in HESR (High Energy Storage 

Ring, Germany, FAIR Collaboration) [1]. 

A beam of heavy particles is mixed with the cold 

electron gas at a straight section of the storage ring. Due 

to Coulomb collisions the beam loses some of its heat 

energy. Originally, the theory of pair Coulomb 

collisions was used to describe the electron cooling [2-

4]. Later, this theory was supplemented by a dielectric 

model which takes into account the collective effects at 

large impact parameters. Total energy losses were 

calculated by cross linking of results from both 

approaches. 

In the papers [5, 6] quantum field method was 

proposed to describe energy losses of a massive charged 

particle in an electron gas. The quantum field method is 

more general and includes both the theory of binary 

collisions and plasma method as special cases, and does 

not use the phenomenological parameters. 

The quantum field method allows to take into 

account the influence of the temperature of the electron 

gas on energy losses of a charged particle. The electrons 

can have an isotropic or an anisotropic velocity 

distribution. The last one is very important because 

during of electron cooling the projectile particle slows 

in the electron gas with anisotropic temperature which 

is, matter-of-course, a consequence of acceleration of 

electron gas (the Liouville's theorem). 

An anisotropic velocity distribution of the electrons 

is one of the main reasons of, so-called, fast electron 

cooling [4]. The effect of enhancing of energy transfer 

from the stored beam of massive charged particles to the 

electron gas is observed. 

In this paper, the analytical expressions of the 

dielectric susceptibility of the electron gas with 

isotropic and anisotropic velocity distribution is 

obtained. Calculations are made for the energy loss of 

heavy charged particles in the approximation of low 

temperature electron gas. Energy losses in the electron 

gas with the temperature are numerically calculated. 

The dependence of energy losses of the massive charged 

particle on its velocity is presented. Numerical results 

were compared with approximate expressions. 

 

1. ISOTROPIC VELOCITY DISTRIBUTION 

1.1. POLARIZATION OPERATOR 

In the frame of the quantum-field theory energy 

losses of the projectile particle in the electron gas is 

determined by equation (system of units: 

)[5] 

 
where 

 

 
is the energy of projectile particle, 

 
is the energy of the transition from a state with 

momentum  to state with momentum , 

 
is Fourier component of the interaction potential, 

 
is an inverse temperature (thermal energy,  ),  

is a mass of projectile particle;  is a momentum of 

projectile particle;  is a wave vector;  is a 

polarization operator. 
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The explicit form of the polarization operator 

 in the cases of a sufficiently tenuous plasma or 

low-temperature high-density gas can be graphical 

represented in the form of a loop (Fig. 1) 

 

 
Each solid line corresponds to the zero-particle 

Green's function. 

In the one-loop approximation the polarization 

operator can be written as  

 
where  is a velocity distribution function.  

We shall use the Maxwell distribution 

 
Dielectric susceptibility  is related with the 

polarization operator: 

 
From equation (1) it follows that for the 

determination of the energy loss we need to know the 

real and imaginary part of the polarization operator 

(dielectric susceptibility). 

 

 
where , w ,  are 

dimensionless wave vector, frequency, temperature, 

respectively. 

To find the explicit form of the susceptibility one 

uses the well known solution for the permittivity in the 

one-dimensional case [7] and generalizes it to the 3-

dimensional form. As a result: 

 

 

 
where  

 

 

1.2. LOW TEMPERATURE CASE 

     Let consider the case when the velocity of the 

projectile particle is much higher than the average 

thermal velocity of the electrons, . One uses the 

expansion for large values of the argument for function 

looks like  

 

 
Polarization operator in the approximation of low 

temperatures has the form 

 

(16) 

 
 

The well-known in the classical approach expression 

for the plasma permittivity is obtained by neglecting 

quantum corrections. 

 
The ratio of permittivity and susceptibility is 

 
At high speed of the projectile particles the 

imaginary part rapidly tends to zero. It can be neglected. 

Substituting equation (18) in equation (10) one can 

obtain an expression for energy losses in the electron 

gas in the approximation of low temperatures in the 

second order on : 

 

where the Coulomb logarithm is .  

1.3. NUMERICAL CALCULATION 

Compare the expression (19) with the results of the 

numerical calculation of equation (10). 
 

 

 
Results of numerical calculation of energy losses are 

presented on Fig. 2. The solid line coresponds to the low 

temperature approximation. Fig. 2 shows that results of 

numerical calculations are well described by an 

analytical expression (19) for sufficiently high velocities 

of the projectile particle. 

Fig. 2. The dependence of energy losses of heavy 

charged particles, the normalized by , in the 

electron gas with the average thermal energy 

 on the speed. Speed is measured in units of 

. The solid line corresponds Eq. (19) 

Fig. 1. The Feynman diagram of the polarization 

operator in the one-loop approximation 
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Results of numerical calculation of energy losses of 

heavy charged particles in the electron gas are presented 

for different electron temperatures.  

 

 
Curves correspond results with next temperature of 

electron gas: a) filled circles is ; b) open 

triangles is ; c) open circles is 

; d) open squares is ; e) filled 

squares is . Speed is measured in units of 

. 

The Fig. 3 shows that energy losses increase and 

their maximum displaces toward lower velocities with 

lowering of the temperature of the electron gas. An axis 

of abscise is logarithm. The value of a plasma frequency 

equal [1]. 

 

2. ANISOTROPIC VELOCITY 

DISTRIBUTION 
2.1. POLARIZATION OPERATOR 

In the case of an anisotropic valocity distribution of 

the electron gas it is convenient to introduce the concept 

of the transverse and longitudinal temperature (velocity 

spread):  is a transverse temperature,  is a 

longitudinal temperature. If assume that these two 

components are independent, then the distribution can 

be written as [7]. 

 
Let choose an axis 0  along the direction of the 

electron beam as a whole then 

 
Analytical expressions of the real part and imaginary 

one of the dielectric susceptibility in the anisotropic 

case are calculated in the same way to the isotropic 

distribution: 

 

 

(23) 

where  

 

 
Equations (22) and (23) in the case of equal 

transverse and longitudinal temperature  

reduce to equations (11) and (12), respectively. 

2.2. LOW TEMPERATURE CASE 

When the progectile particle moves with velocity , 

which significantly exceeds the average thermal 

velocity of the electron gas one can expand the 

expression (23) of the parameter . 

  

.(26) 

Let obtain the energy loss of the projectile particle 

moving along the direction of anisotropy by substituting 

equation (26) into equation (10). With accurate to terms 

of order  longitudinal losses are:  

 

(27) 

2.3. NUMERICAL CALCULATION 

By using equation (10) one can numerical calculate 

the dependence of the longitudinal energy losses from 

velocity of the projectile particle. Let compare obtained 

results with equation (27) and with results of isotropic 

velocity distribution. 

 

 
Points lines correspond to an isotropic distribution: 

line with a) open squares is ; b) open circles is 

; c) open triangles is . 

The solid lines correspond to the case with an 

anisotropic velocity distribution: a) filled circles is 

; b) filled triangles is ; 

c) filled squares is . Long-dashed and 

short-dashed lines correspond , Eq. (27) 

and , eq.(27), respectively. 

Fig. 4. The dependence of energy losses, normalized 

by , in the electron gas for different 

longitudinal electron temperatures (anisotropy) 

compared to their approximation Eq. (27) and to 

isotropic electron velocity distribution 

Fig. 3. Energy losses of heavy charged particles, the 

normalized by , in the electron gas for 

different electron isotropic temperatures  

on the speed 
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Transverse temperature is . Speed is 

measured in units of . 

CONCLUSIONS 

In the frame of the quantum field method it is 

posible to consider the influence of electron gas 

temperature on the energy loss of the massive charged 

particle.  

As consequence of acceleration of electron gas its 

longitudinal temperature is significantly lower than 

transverse one. The presence of a lower longitudinal 

electron gas temperature in an anisotropic distribution 

leads to a shift of the maximum of energy losses 

compared to the isotropic case for the same values of 

transverse temperature to the lower value of the 

projectile particle velocity. 

The authors effect their gratitude to V.I. 

Miroshnichenko and V.E. Storizhko for valuable 

remarks. 
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ВЛИЯНИЕ АНИЗОТРОПНОЙ ТЕМПЕРАТУРЫ ЭЛЕКТРОННОГО ГАЗА НА ЭНЕРГЕТИЧЕСКИЕ 

ПОТЕРИ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ПЛАЗМЕ 
 

А.В. Хелемеля, Р.И. Холодов 
 

     В рамках квантово-полевого метода получено аналитическое выражение для реальной и мнимой частей 

диэлектрической восприимчивости электронного газа с анизотропным распределением. Подсчитаны 

энергетические потери массивной заряженной частицы в электронном газе в случае изотропного 

распределения по скоростям и в случае движения налетающей частицы в направлении анизотропии. 

Результаты численного счета энергетических потерь подтверждаются аналитическими расчетами в 

приближении малых температур. 

 

 

ВПЛИВ АНІЗОТРОПНОЇ ТЕМПЕРАТУРИ ЕЛЕКТРОННОГО ГАЗУ НА ЕНЕРГЕТИЧНІ ВТРАТИ 

ЗАРЯДЖЕНОЇ ЧАСТИНКИ В ПЛАЗМІ 

 

О.В. Хелемеля, Р.І. Холодов 

 

     У рамках квантово-польового методу отримано аналітичний вираз для реальної та уявної частин 

діелектричної сприйнятливості електронного газу з анізотропним розподілом за швидкостями. Підраховано 

енергетичні втрати масивної зарядженої частинки в електронному газі у випадку ізотропного розподілу за 

швидкостями та у випадку руху налітаючої частинки в напрямку анізотропії. Результати чисельного 

обчислення енергетичних втрат підтверджуються аналітичними розрахунками в наближенні малих 

температур. 
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