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Recently published derivations of four stationary maotional invariants in adiabatic equilibria are presented. The four
invariants (e,m1,,I ) contains a radial drift invariant 1 , which determines the density radial profile and the

diamagnetic drift, and an additional paralle invariant I, that determines the plasma current along the magnetic field.

Thus, there are in general more than three stationary invariants for the adiabatic motion of a gyrating particle. The
result is valid to first order in the gyro radius, and is applicable to geometries with adiabatic fields, including toroidal
aswell as open trap geometry. In axisymmetric tori, the toroidal invariant can replace the longitudinal invariant in the
analysis and the radial invariant can be determined from the projected gyro center motion. The four invariants is
determined for passing as well as trapped particles. For equilibria with sufficiently small banana widths, the radial
invariant can to lowest order be approximated by the gyro center value |, » T,(x,v) of the radial Clebsch coordinate.

To thislowest order, the gyro centers drift on a magnetic flux surface.

PACS: 52.50.Lp, 52.55.Jd, 52.55.Ez

THREE, FOUR OR FIVE INVARIANTS?

The standard opinion is that most three independent
stationary constants of motion can be found for a point
charge. A reason for this is that the theorem on
integrable systems by Liouville, which states that three
independent invariants in involution is sufficient to
integrate the equations of motion, often has been
erroneoudly interpreted as implying that a fourth
invariants cannot exist. Although the trajectories are
determined by three constants of motion in involution
(their Poisson brackets are zero), the misinterpretation
origins from the claim that the trgjectory would be a
function of the three separating invariants only. The true
conclusion is that, in addition to the three invariants, the
trgjectory also depends on a curve parameter, since the
orbit is determined by a first order differentia equation.
If there exists a way of eliminating the curve parameter
by a function of the form 1,(x,Vv) , a fourth independent

stationary invariant is found, and a Vlasov equilibrium
can be liberated from a handicapped treatment with only
three constants of motion.

In tokamaks, the set (e,mp ) is often used to

describe the kinetic system. However, a confined particle
cannot escape from the confining magnetic field region,
and thisimplies that the average along the guiding center
of the radial Clebsch coordinate |, »T,(x,Vv)of the

particle has to be constant. It can be demonstrated that
|, determines a fourth independent stationary invariant

in Vlasov equilibria [1,2]. The invariance of the radial
coordinate is not restricted to fields in axisymmetric tori,
and the result with the fourth independent invariant has
applications also to mirrors and stellarators.

Invariants are useful in a variety of plasma studies,
and it is not possible to foresee in detail al areas where
an application of afourth invariant could be important. It
is well known that MHD and kinetic stahility, transport

and heating are profile sensitive, and a complete set of
invariants could be required to develop reliable models
with realistic profiles.

The existence of a radia invariant has a range of
implications. The dependence on the radial invariant
determines the radia profiles of the density and
temperature and this gives a diamagnetic drift in a
direction perpendicular to the magnetic field. In
tokamaks, where the standard set (e,mp ) of three

invariants is insufficient to model a poloidal current, the
poloidal current can directly be determined by using the
radial invariant in the digtribution function. It is aso
possible to establish a bridge between Vlasov equilibria
and ideal MHD with the use of the radial invariant [2].

A key goa of the studies presented here has been to
understand how many invariants are required to get a
complete description of adiabatic Vlasov equilibria. This
is not a trivial question, since intuitive arguments point
in different directions for the number of stationary
invariants. The equations of motions give the six
invariants % (0) = f,(x,v,t) and v,(0) =g, (x,v,t) for
theinitial position and velocity, and the task isto identify
combinations of these invariants which reduce to time
independent invariants. A suggestion by G. Schmidth,
based on an argument that only a single phase variableis
needed to specify the orbit, is that as much as five
stationary invariants may be found, see p. 70 in Ref. 3..
Second, it is claimed in Ref. 4 (p. ix) that the number of
adiabatic invariants are less or equa to the degree of
freedom for a point charge, which would imply at most
three independent invariants for a point charge. Finaly,
the theorem by Liouville states that three independent
invariants in involution are sufficient to integrate the
equations of mation of a point chargel [5]. This may
indicate that no more than three independent stationary
invariants could be found. However, this is a fdse
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conclusion, since the specific case of a point charges
moving in a constant magnetic field, i.e.

1 dv . 4
—— =V Z
W, dt
gives the four independent and exact invariants
(v”,vA,io,yo),where
K V) = x+-L
0
= v,
X,V) = -
Yox,v) =y W,

are the guiding center variables of the x and y
coordinates. In view of the theorem of Liouville, this set
of four stationary invariants may seem like a “quasi-
paradox”, but both results are correct, as pointed out in
Ref. 3.

Several other systems with four, or even five,
stationary invariants can be identified. A particularly
simple case is the field free case with a constant particle
velocity where the orbit is a straight line and the three
initial values of the Cartesian coordinates are
timedependent motional invariants;

[ (x,v,t) = x- vt
L,(xv,t) = y-vit
[,(x,v,t) = z- v,t

The task isto construct new invariants by eliminating
the time dependence. A simple calculation yield the three
time independent invariants

l,(X,V) = v X- vy

[.(X,Vv) = v,x- v,z
l6(x,V)
where the last invariant depends on the cther invariants,
snce V,l,-v I +v,l,=0. In this smple caseg

= V,y- v,z

(Vs Vy,V,,1,,15) provides a set of five independent

stationary invariants.

The five invariants may seem like an exceptional
case. However, a large number of studies of gyrating
particle motion have been devoted to find a canonica
transformation (by some asymptotic expansion) to action
angle variables, where the transformed Hamiltonian
H=H(,,J,,J,) is a function of the action variables

only [6]. The idea behind the action angle formalism isto
transform the resulting orbit equations into the straight
lines Q (t) =Q (0) +w; (I)t for the transformed canonical
coordinates, where the frequencies w, (J) =TH /1J, are
constant. Five independent stationary invariants can be
instructed in this case in exactly the same manner as for
the constant velocity case.

This raises the natural question if there is a fifth
independent stationary invariant for particles gyrating in
a constant magnetic field. A check shows that the fifth
invariant is the gyro angle dependent quantity

Ls(X, V) =Vv)j 4 - W,z

Although thisis indeed atime independent invariant,

the equilibrium distribution function does not depend on
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this invariant in the typical cases where the equilibrium
distribution functions do not dependent on the gyro
angle. For this reason, four independent stationary
invariants are required to construct Vlasov equilibria in
representative situations.

THE STRAIGHT FIELD LINE MIRROR

There are some redlistic systems where it is possble
to express the four “useful” invariants in closed form.
Our interest in the problem arose from the simple form of
four constants of motion in the “straight field line
mirror” [7], which is a margina minimum B. It is well
known that the minimum B producing fied has the
drawback of producing a strong ellipticity of the flux-
tube near the mirrors. The optimal choice which
combines MHD stability with the smallest possible
elipticity ought to this reason be a marginal minimum B
field. The unique solution for this magnetic field readsin
the near paraxial approximation

B_ Ks
B, 1-s*/c’
where s is the arc length of the magnetic field lines, X,
and y, are Clebsch coordinates and ¢ and B, are

constants. To leading ordersin a/c, where a isthe mid

plane radius of the flux tube, the arc length is
sy =z + 2 Y
o 2'1+7 1-2

where s =s/c and Z = z/c and the Clebsch coordinates
are X, =x/(1+Z) and y, =y/(1- Z), which describe
straight nonparallel field lines with focal linesat z=+c
, seeFig. 1. The flux tube boundary is determined by

2_, X 2 2
& =() + ()
which gives the dlipticity e, = (R, ++/R, - 1)?, where
R,(2) isthe local mirror ratio. For a mirror ratio of 4,
e, =13.9 and this seems acceptable for amirror reactor.

=Rix,” Ny,

Fig. 1. The straight nonparallel magnetic field lines
in the marginal minimum B field. Each gyro center
bounces back and forth on a single field line in this

particular field

A check shows that to leading orders |[N§ =1 and

thus B = B(s) isamarginal minimum B fidd. From this
follows that the guiding center magnetic drift is zero,
since

v. ~B" NB(s)=0



This implies that each ion moves back and forth on a
single magnetic field line, whereby the guiding center
values of the Clebsch coordinates are constant2:

XO,gc = XO +(1' §)2§(0/VVO
yO,gc = XO - (1+§)2ﬁ0 /VVO
The set (e,m X, ., Y,4) Provides four constants of

motion and Vlasov equilibria to first order in the plasma
beta can be described with distribution functions of the
form F(e,m xogc,yogc) The resulting magnetic field is

- (- _)( BNs -

1- /¢
B, L av' Tb/Ss’

8 052 |x- x1

where b =2mP. /B}(s) . Thisleadsto j, =0, which is
a sufficient criterion to obtain exactly omnigenous
equilibria [8], i.e. the radia drift is zero and the gyro
center moves on a magnetic flux surface to first order in
beta. There is therefore no neoclassical enhancement of

the radial transport, and this is achieved without an
axisymmetrization of the confining field.

GYRO CENTER MOTION

In general geometry, toroidal as well as open traps,
we intend to determine a radia drift invariant for the
confined particles. To lowest order in the radial drift the
invariant can be identified with the guiding center radial
Clebsch coordinate. To determine the dependence of
I.(x,v) on the phase space coordinates(x,v), it is
necessary to carry out an adiabatic expansion of the
equations of motions. First, a transformation
(X Y,2) ® (r,,0,,9 to flux coordinates is introduced by,
see[1] and [2],

m, pl )

fm,pl (X) = -

= NrO ’ roNqo

W

Ns = B +kNr, +hr,Nq,
where B, isaconstant, r, and ¢, are theradia and
angle Clebsch coordinates, s isthe arc length along the
magnetic field lines and k(x) and h(x) are
“geometric” functions associated with the magnetic field
geometry. The particlevelocity v =v B +v, is
— (EbrONqo B rocf(ONro), B
B/B,

v, = 8- (k& - hrdh) = 8- v, s© %

I
and dots stand for time derivatives. The last formula
shows that v, is the rate of change of the arc length

projected on the flux lines, and the paralel velocity is
zero at locations where the motion does not generate a
change of the arc length coordinate of the particle. The
first order difference between v, and & must be

included to arrive at exact energy conservation for the
gyro center motion in a stationary field.

The motion is split into a rapidly gyrating part and a
dowly varying gyro center motion. Bars denote gyro
center quantities, and the radial position of the particleis
of theform

o = TOGV) + g D

where 1, is a “gyro ripple’ associated with the

gyrations, see [1] and [2], and this gyro ripple is
responsible for the diamagnetic current. In a stationary
field, the velocity of the guiding center isto first order in
the gyro radius determined by the four equations

e =U . (X)+mv; /2= const (2a)
5 g ko ipr, Moo g 1y, s (2b)
ot dt dt
U U
O%_- _EM_ h—u+ 2(e- Ugc)ﬁ (20)
T 1, s
S U
vy 9% - We el e I o0
¢ m TS ¥

where U (X) =of +mB and V,(X) is the guiding
center perpendicular drift,
E’ B mB’ NB mVv
B? q B?
For a periodic guiding center motion, a longitudinal
invariant, which is an exact (not only adiabatic) constant

to first order in the gyro radius, can be defined as an
integra  along the gyro center orhit, i.e,

J, =V2mg)le- U (S)dS ©)

where S is a curve parameter for the guiding center
orbit [1]. This definition differs somewhat from the
paralle action integral introduced by Northrop [4]
(which isintegrated along a magnetic field line), see also
[1,2]. For confined particles, the drift orbit average
I, =(T,) must be constant, and (e,m1,,J,) is a set of

four independent invariants for the first order adiabatic
motion.

A remark on confinement could be necessary: The
general system of equations (2a-d) does not guarantee the
existence of aradial invariant, since there is no imposed
difference on the meaning of the Clebsch coordinates r,
and -rg, by the relation B=BNr," r,Ng,. Even if
collisons are neglected, confinement cannot be assured
without some additional constraint on the fields, such as

Nr,» =0,

compare Catto and Hazeltine. One illustration of this
possibility is fields in nonaxisymmetric tori (i.e. certain
stellarator fields or tokamak fields with too strong field
ripples), where the field lines may trace out from the
toroidal confinement region. Since the dominant
component of the guiding center velocity is aong the
magnetic field, particles would escape from the
confinement region after sufficiently many revolutions
around the torus if the fields are not constrained to be
inside the torus.

It seems plausible that the condition Nr,% =0

would lead to confinement of the single particle motion,
91
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and by this constraint a clear physical distinction is made
between the two Clebsch coordinates. In  nearly
omnigenous equilibria, dr,/dt would be close to zero,
while a finite dqg, /dt would be associated with the gyro
center drift.

AXISYMMETRIC TORI

In axisymmetric tori fields, the symmetry gives a
toroidal invariant p , which can replace the parallel

invariant in the analysis, and the drift orbit can be
projected on a closed curve in the (r,z) plane. The

projected gyro center motion determines the radial drift
invariant. These properties are seen by introducing the
poloidal angle z,,,

S &p(ro) _

B, =202, (@

B() 1o B(r)
where B2 =82+8’ and z(r,2) is specified in [1] and
[2]. The relation z(r,,q,,5) =z (r,2) is associated with
the linear dependence of q,(r,j ,2z) and s(r,j ,z) on the
toroidal angle and the toroidal symmetry of the fields,
which implies U, =U_(r,,z), see [1] and [2]. The
projected guiding center motion is determined by
a, __ B 1 Uy 118

2,(ry,9y,9) =- %+q0

— +2e-U,.)——=1, 5a
dt qB&r_O ﬂZ ( gC)BﬂZ] ()
dz. ~p Vi, B 161U, c, U
—==—=—+—=—¢8 -Ze-Uc—', 5b
TR RT3 L

where v, =s+v2/myJe- U, , s =+1 determines the

direction of the parallel velocity and c,(T;,z ) is defined
in [2]. In straight systems with rotational symmetry, T, is
a motional invariant and such equilibria are omnigenous
with constant values of ¢, = B2/B” and dz /dt.

In axisymmetric tori, passing particles far from a
trapped state have a nearly constant dz /dt, while z-
oscillates for a trapped particle, providing afinite banana
orbit width. For each constant values of e and m, the
solution of Egs. (5ab), for passing as well as trapped
particles, is a closed curve T,(z)° T,(s,e,mz) in the
(r,z) plane, where z is the curve parameter. For
trapped particles, two orbit portions with opposite signs
v, of connect at the points where s changes sign.

The system of guiding center equations provides a
radia invariant | =T (x,v)+1® and a toroidal
invariant P for the guiding center, which has the same
value as the toroidal invariant of the particle [7].

The general solution of the stationary Vlasov
equation is a function of four (not only three, as often
stated) invariants. In axisymmetric equilibria, a nearly
loca Maxwellian distribution function, expressed in

terms of the invariants and thereby as a solution of the
Vlasov equation, can be written
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2/m
PkTo(l))
where the correction F®, and its contribution to the
toroidal current, has to be determined from detailed
considerations of the transport and heating. With
inclusion of the first order finite radial drift excursions
and neglecting the contribution from F® to the radial
force balance, we obtain j.” B » NP(r,), which
provides a bridge between Vlasov equilibria and ideal
MHD, see[2].

]3/2e-e/kBTD(I,) +F®,

F(e1mpj 7Ir) = nO(Ir)[

2 Z
j y
q /% N
Yp 5
— Ry~ X

Fig. 2. Outline of the pseudo-toroidal coordinates
(X,, Y, ) and the projected poloidal angle Z . A

fraction of the particlesare mirror trapped in the weaker
field region at the outer part of the torus
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YETBIPE UHBAPUAHTA JABUXEHUA B AIMABATUYECKHUX PABHOBECHBIX
COCTOAHUAX

0. Azpen, B.E. Mouceenxo

[IpencTaBneHsl HEAABHO OIYOJIMKOBAHHBIC MCCIEAOBAHUS T10 TIOMCKY YETHIPEX CTAMOHAPHBIX MHBAPHAHTOB JBM)KCHHMS
B a1uabaTMYeCcKnX PaBHOBECHBIX IUIA3MEHHBIX KOH(urypauusx. Halinenneie uwerbipe wunBapumanta (e,ml, 1)

BKJIIOYAIOT B ce0s paguanbHBIA AperidoBblii MHBapuaHT | , KOTOpBI OTBEYaeT 3a pagualbHBINA NPO(UIb MIIOTHOCTH

r

IUIasMbl U 3a JUaAMarHeTu3M, M ,HOHOJIHI/ITGJ'ILHI)II\/’I HapaHHGHLHI)Iﬁ HWHBApUaHT |”, KOTOpLIfI OIPCACIIACT HpOZ[OJILHLIﬁ

ToK. TakuMm oOpa3oM, cymiecTByeT Oojiee 4eM TpW CTAllMOHApHBIX WHBApHaHTa VIS aauadaTHYecKOro JBH)KCHHS
YaCTHIBI B MATHUTHOM MOJIE. DTOT PE3yNIbTAT SBISETCS MPUOIMKEHHEM IIEPBOTO MOPSAKa MO MAJIOMY THPOpaIycy U
MIPUMEHUM K TE€OMETPHUSM C aauadaTHYecKd MEHSIOUIMMCS MAarHUTHBIM IIOJIEM, BKJIIOYash TOPOWAAIBHBIC CHCTEMBI U
OTKpBITHIC JIOBYIIKH. B ocecHMMETpHYHOM TOpe HapaulelbHBbIi MHBApHAHT MOXET OBITh 3aMEIICH TOPOHUAATBHBIM
WHBApHAHTOM, M PaHaIbHBI HHBAPHAHT MOXET OBITh HAalJIeH U3 CIIPOCLMPOBAHHBIX YpaBHEHHWH JBIKeHUs. YeTsipe
MHBapHUaHTA CYHIECTBYIOT KakK MJIsi NPOJETHBIX, TaK W JUIA 3alepThIX 4acTHUL. J[Is paBHOBECHBIX COCTOSHUHN C
JIOCTaTOYHO MaJIOW IMIMPHUHOM OAHAHOBBIX TPAGKTOPHH paJvalbHBI MHBAPHAHT B IEPBOM NPHOIIMIKEHUH TIPE/CTaBIISET
coboit paguanbHyro Knebu-koopaunary uenrpa JlapmopoBckoit opouts! yactuupl |, » T, (X, V) . B atoM npubimkeHuu

HaCTHUIbI Hpeﬁ(l)yIOT BJ10JIb MAarHMTHBIX HOBerHOCTGﬁ.

YOTUPU IHBAPIAHTA PYXY B AIIABATUYHUX PIBHOBAKHUX CTAHAX
0. Azpen, B.€. Moicecnko

IMomaHi pe3ynbTaTH HEUIONABHO OITYOJTIKOBaHMX JOCITIDKEHb 3 TOMIYKY YOTHPHOX CTAIllOHAPHMX IHBapiaHTIB pyXy B

aniabaTHYHMX PIBHOBKHMX IUIa3MOBMX KoH(irypauisx. 3Haiimeni 4ortupyn imBapiantu (€,ml ,I) Bxmouno 3
pajianbHUM ApeldoBuM iHBapiaHTOM |, , 110 BiANOBiNA€ 3a pajiallbHUI PO3MOLI IYCTUHH IIJIa3MU 1 3a AlaMarHeTusM,
Ta JI0]aTKOBUN MNapasesbHuil iHBapiant |, sKkuil 3a3Havae y3na0BKHIA CcTpyM. Takum 4MHOM, iCHye OLIbLI HDK TpH

CTaLllOHAPHUX 1HBapiaHTa I agiabaTMYHOrO pyXy YacTWHKHM B MarHiTHoMy momi. Lleit pesyinprar € HaOmmKeHHAM
MIEPIIOro MOPSIKY 32 MaJUM TipopaiycoM i MOKe OyTH 3aCTOCOBaHHWH O TEOMETPil, Je MarHITHE TOJIe 3MIHIOEThCS
aniadaTu4HO, BKIIOYHO 3 TOPOIJAJbHUMHM CHCTEMaMH Ta BIAKPUTUMH IIacTKaMH. B BicecMMETpHYHOMY TOpi
MapaJieJIbHUH iHBapiaHT Mo)ke OyTH 3aMiHEHMI Ha TOpOiJalbHWH, 1 pajiajdbHUI iHBapiaHT Moke OyTH 3HaiineHni i3
CIPOCKTOBAHUX PIBHSAHBb pyXy. YoTHpH IHBapiaHTH iCHYIOTH SIK JUIS HPOJITHHUX, TaK 1 JUIS 3aMKHEHHWX 4acTHHOK. [lyist
PIBHOB&)XHHMX CTaHIB 3 JOCTaTHBO MaJIOI0 IIMPHHOI0 OaHAHOBUX TPAEKTOpiil pajiadbHUI iHBapiaHT y TEpLIOMY
HaOmmKeHHi € paxiansHOr0 Kitebur-koopaiHaToro JlapMopoBebkoro ueHTpy opbitu wactuaku |, » T, (X,V) . B upomy

HaOJIMKEeHHI YaCTUHKH Npei(yloTh y3J0BXK MarHiTHUX IIOBEPXOHb.
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