
Problems of Atomic Science and Technology. 2006,  6. Series: Plasma Physics (12), p. 89-93
89

FOUR MOTIONAL INVARIANTS IN ADIABATIC EQUILIBRIA
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61108 Kharkov, Ukraine

Recently published derivations of four stationary motional invariants in adiabatic equilibria are presented. The four
invariants ||( , , , )rI Iε µ contains a radial drift invariant rI , which determines the density radial profile and the
diamagnetic drift, and an additional parallel invariant ||I  that determines the plasma current along the magnetic field.
Thus, there are in general more than three stationary invariants for the adiabatic motion of a gyrating particle. The
result is valid to first order in the gyro radius, and is applicable to geometries with adiabatic fields, including toroidal
as well as open trap geometry. In axisymmetric tori, the toroidal invariant can replace the longitudinal invariant in the
analysis and the radial invariant can be determined from the projected gyro center motion. The four invariants is
determined for passing as well as trapped particles. For equilibria with sufficiently small banana widths, the radial
invariant can to lowest order be approximated by the gyro center value 0 ( , )rI r≈ x v  of the radial Clebsch coordinate.
To this lowest order, the gyro centers drift on a magnetic flux surface.
PACS: 52.50.Lp, 52.55.Jd, 52.55.Ez

THREE, FOUR OR FIVE INVARIANTS?
The standard opinion is that most three independent

stationary constants of motion can be found for a point
charge. A reason for this is that the theorem on
integrable systems by Liouville, which states that three
independent invariants in involution is sufficient to
integrate the equations of motion, often has been
erroneously interpreted as implying that a fourth
invariants cannot exist. Although the trajectories are
determined by three constants of motion in involution
(their Poisson brackets are zero), the misinterpretation
origins from the claim that the trajectory would be a
function of the three separating invariants only. The true
conclusion is that, in addition to the three invariants, the
trajectory also depends on a curve parameter, since the
orbit is determined by a first order differential equation.
If there exists a way of eliminating the curve parameter
by a function of the form 4 ( , )I x v , a fourth independent
stationary invariant is found, and a Vlasov equilibrium
can be liberated from a handicapped treatment with only
three constants of motion.

In tokamaks, the set ( , , )pϕε µ  is often used to
describe the kinetic system. However, a confined particle
cannot escape from the confining magnetic field region,
and this implies that the average along the guiding center
of the radial Clebsch coordinate 0 ( , )rI r≈ x v of the
particle has to be constant. It can be demonstrated that

rI  determines a fourth independent stationary invariant
in Vlasov equilibria [1,2]. The invariance of the radial
coordinate is not restricted to fields in axisymmetric tori,
and the result with the fourth independent invariant has
applications also to mirrors and stellarators.

Invariants are useful in a variety of plasma studies,
and it is not possible to foresee in detail all areas where
an application of a fourth invariant could be important. It
is well known that MHD  and kinetic stability, transport

and heating are profile sensitive, and a complete set of
invariants could be required to develop reliable models
with realistic profiles.

The existence of a radial invariant has a range of
implications. The dependence on the radial invariant
determines the radial profiles of the density and
temperature and this gives a diamagnetic drift in a
direction perpendicular to the magnetic field. In
tokamaks, where the standard set ( , , )pϕε µ  of three
invariants is insufficient to model a poloidal current, the
poloidal current can directly be determined by using the
radial invariant in the distribution function. It is also
possible to establish a bridge between Vlasov equilibria
and ideal MHD with the use of the radial invariant [2].

A key goal of the studies presented here has been to
understand how many invariants are required to get a
complete description of adiabatic Vlasov equilibria. This
is not a trivial question, since intuitive arguments point
in different directions for the number of stationary
invariants. The equations of motions give the six
invariants (0) ( , , )i ix f t= x v  and v (0) ( , , )i ig t= x v  for
the initial position and velocity, and the task is to identify
combinations of these invariants which reduce to time
independent invariants. A suggestion by G. Schmidth,
based on an argument that only a single phase variable is
needed to specify the orbit, is that as much as five
stationary invariants may be found, see p. 70 in Ref. 3..
Second, it is claimed in Ref. 4 (p. ix) that the number of
adiabatic invariants are less or equal to the degree of
freedom for a point charge, which would imply at most
three independent invariants for a point charge. Finally,
the theorem by Liouville states that three independent
invariants in involution are sufficient to integrate the
equations of motion of a point charge1 [5]. This may
indicate that no more than three independent stationary
invariants could be found. However, this is a false
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conclusion, since the specific case of a point charges
moving in a constant magnetic field, i.e.

0

1 d
dt

= ×
Ω

v v z

gives the four independent and exact invariants
( )00|| ,,v,v yx⊥ , where

0
0

v
( , ) yx x= +

Ω
x v

0
0

v
( , ) xy y= −

Ω
x v

are the guiding center variables of the x and y
coordinates. In view of the theorem of Liouville, this set
of four stationary invariants may seem like a “quasi-
paradox”, but both results are correct, as pointed out in
Ref. 3.

Several other systems with four, or even five,
stationary invariants can be identified. A particularly
simple case is the field free case with a constant particle
velocity where the orbit is a straight line and the three
initial values of the Cartesian coordinates are
timedependent motional invariants;

( , , ) vx xI t x t= −x v
( , , ) vy yI t y t= −x v
( , , ) vz zI t z t= −x v

The task is to construct new invariants by eliminating
the time dependence. A simple calculation yield the three
time independent invariants

4 ( , ) v vy xI x y= −x v

5 ( , ) v vz xI x z= −x v

6 ( , ) v vz yI y z= −x v
where the last invariant depends on the other invariants,
since 4 5 6v v v 0z y xI I I− + = . In this simple case,

4 5(v , v , v , , )x y z I I provides a set of five independent
stationary invariants.

The five invariants may seem like an exceptional
case. However, a large number of studies of gyrating
particle motion have been devoted to find a canonical
transformation (by some asymptotic expansion) to action
angle variables, where the transformed Hamiltonian

1 2 3( , , )H H J J J= is a function of the action variables
only [6]. The idea behind the action angle formalism is to
transform the resulting orbit equations into the straight
lines ( ) (0) ( )i i iQ t Q tω= + J  for the transformed canonical
coordinates, where the frequencies ( ) /i iH Jω = ∂ ∂J  are
constant. Five independent stationary invariants can be
instructed in this case in exactly the same manner as for
the constant velocity case.

This raises the natural question if there is a fifth
independent stationary invariant for particles gyrating in
a constant magnetic field. A check shows that the fifth
invariant is the gyro angle dependent quantity

zI g 0||5 v),( Ω−= ϕvx
Although this is indeed a time independent invariant,

the equilibrium distribution function does not depend on

this invariant in the typical cases where the equilibrium
distribution functions do not dependent on the gyro
angle. For this reason, four independent stationary
invariants are required to construct Vlasov equilibria in
representative situations.

THE STRAIGHT FIELD LINE MIRROR
There are some realistic systems where it is possible

to express the four “useful” invariants in closed form.
Our interest in the problem arose from the simple form of
four constants of motion in the “straight field line
mirror” [7], which is a marginal minimum B. It is well
known that the minimum B producing field has the
drawback of producing a strong ellipticity of the flux-
tube near the mirrors. The optimal choice which
combines MHD stability with the smallest possible
ellipticity ought to this reason be a marginal minimum B
field. The unique solution for this magnetic field reads in
the near paraxial approximation

0 02 2
0

.
1 /

s x y
B s c

∇
= = ∇ ×∇

−
where s  is the arc length of the magnetic field lines, 0x
and 0y  are Clebsch coordinates and c  and 0B  are
constants. To leading orders in /a c , where a  is the mid
plane radius of the flux tube, the arc length is

2 21( , , ) ( )
2 1 1

x ys x y z z
z z

= + −
+ −

where /s s c=  and /z z c=  and the Clebsch coordinates
are 0 /(1 )x x z= +  and 0 /(1 )y y z= − , which describe
straight nonparallel field lines with focal lines at z c= ±
, see Fig. 1. The flux tube boundary is determined by

2 2 2( ) ( )
1 1

x ya
z z

= +
+ −

which gives the ellipticity 2( 1)ell m mR Rε = + − , where
( )mR z  is the local mirror ratio. For a mirror ratio of 4,

13.9ellε =  and this seems acceptable for a mirror reactor.

Fig. 1. The straight nonparallel magnetic field lines
in the marginal minimum B field. Each gyro center
bounces back and forth on a single field line in this

particular field

A check shows that to leading orders 1s∇ =  and
thus ( )B B s=  is a marginal minimum B field. From this
follows that the guiding center magnetic drift is zero,
since

0)(~ =∇×⊥ sBBv



91

This implies that each ion moves back and forth on a
single magnetic field line, whereby the guiding center
values of the Clebsch coordinates are constant2:

2
0, 0 0 0(1 ) /gcx x s y= + − Ω&

2
0, 0 0 0(1 ) /gcy x s x= − + Ω&

The set 0, 0,( , , , )gc gcx yε µ  provides four constants of
motion and Vlasov equilibria to first order in the plasma
beta can be described with distribution functions of the
form 0, 0,( , , , )gc gcF x yε µ . The resulting magnetic field is

0
,2 2(1 )( )

2 1 / m pl
B s
s c

β
φ

∇
= − + ∇

−

0
, 2

' / '( )
8 '1 'm pl
B dV s

s
β

φ
π

∂ ∂
= −

−−∫x
x x

where 2
0 v2 / ( )P B sβ µ ⊥= . This leads to 0|| =j , which is

a sufficient criterion to obtain exactly omnigenous
equilibria [8], i.e. the radial drift is zero and the gyro
center moves on a magnetic flux surface to first order in
beta. There is therefore no neoclassical enhancement of
the radial transport, and this is achieved without an
axisymmetrization of the confining field.

GYRO CENTER MOTION
In general geometry, toroidal as well as open traps,

we intend to determine a radial drift invariant for the
confined particles. To lowest order in the radial drift the
invariant can be identified with the guiding center radial
Clebsch coordinate. To determine the dependence of

( , )rI x v  on the phase space coordinates ( , )x v , it is
necessary to carry out an adiabatic expansion of the
equations of motions. First, a transformation

0 0( , , ) ( , , )x y z r sθ→  to flux coordinates is introduced by,
see [1] and [2],

0 0 0
0

r r
B

θ= ∇ × ∇
B

0 0 0s r rκ η θ∇ = + ∇ + ∇B
where 0B   is a constant , 0r  and 0θ  are  the radial and
angle Clebsch coordinates, s  is the arc length along the
magnetic field lines and ( )κ x   and ( )η x  are
“geometric” functions associated with the magnetic field
geometry. The particle velocity ⊥+= vBv v || is

0 0 0 0 0 0

0

( )
/

r r r r
B B

θ θ
⊥

∇ − ∇ ×
=

B
v

&&

||
000|| )(v

τ
θηκ

d
dsssrrs ≡∇⋅−=−−= ⊥v&&&&

and dots stand for time derivatives. The last formula
shows that ||v  is the rate of change of the arc length
projected on the flux lines, and the parallel velocity is
zero at locations where the motion does not generate a
change of the arc length coordinate of the particle. The
first order difference between ||v   and s&  must be
included to arrive at exact energy conservation for the
gyro center motion in a stationary field.

The motion is split into a rapidly gyrating part and a
slowly varying gyro center motion. Bars denote gyro
center quantities, and the radial position of the particle is
of the form

0 0 0,( , ) gyror r r= +x v    (1)
where 0,gyror  is a “gyro ripple” associated with the
gyrations, see [1] and [2], and this gyro ripple is
responsible for the diamagnetic current. In a stationary
field, the velocity of the guiding center is to first order in
the gyro radius determined by the four equations

constmU gc =+= 2/v)( 2
||xε   (2a)

s
dt

dr
dt
rd

dt
sd

∇⋅+≡++= ⊥v||
0

0
0

|| vv θ
ηκ  (2b)

0
0

0 0

1 2( )gc gc
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U Udr
m U

dt r s s
η

η ε
θ

∂ ∂ ∂
Ω = − − + −

∂ ∂ ∂
 (2c)

0
0 0

0

2( )gc gc
gc

U Ud
m r U

dt r s s
θ κ

κ ε
∂ ∂ ∂

Ω = + − −
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 (2d)

where ( )gcU q Bφ µ= +x  and ( )⊥v x  is the guiding
center perpendicular drift,

)B][(BBBBExv ∇×+
∇×

+
×

=⊥ 4

2
||

22

v
)(

Bq
m

B
B

qB
µ

For a periodic guiding center motion, a longitudinal
invariant, which is an exact (not only adiabatic) constant
to first order in the gyro radius, can be defined as an
integral along the gyro center orbit, i.e.,

∫ −= dSSUmJ gc )(2|| ε   (3)

where S  is a curve parameter for the guiding center
orbit [1]. This definition differs somewhat from the
parallel action integral introduced by Northrop [4]
(which is integrated along a magnetic field line), see also
[1,2]. For confined particles, the drift orbit average

0rI r=  must be constant, and ),,,( ||JI rµε  is a set of
four independent invariants for the first order adiabatic
motion.

A remark on confinement could be necessary: The
general system of equations (2a-d) does not guarantee the
existence of a radial invariant, since there is no imposed
difference on the meaning of the Clebsch coordinates 0r
and 0 0r θ−  by the relation 0 0 0 0B r r θ= ∇ × ∇B . Even if
collisions are neglected, confinement cannot be assured
without some additional constraint on the fields, such as

0 0r∇ ⋅ =j ,
compare Catto and Hazeltine. One illustration of this
possibility is fields in nonaxisymmetric tori (i.e. certain
stellarator fields or tokamak fields with too strong field
ripples), where the field lines may trace out from the
toroidal confinement region. Since the dominant
component of the guiding center velocity is along the
magnetic field, particles would escape from the
confinement region after sufficiently many revolutions
around the torus if the fields are not constrained to be
inside the torus.

 It seems plausible that the condition 0 0r∇ ⋅ =j
would lead to confinement of the single particle motion,
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and by this constraint a clear physical distinction is made
between the two Clebsch coordinates. In nearly
omnigenous equilibria, 0 /dr dt  would be close to zero,
while a finite 0 /d dtθ  would be associated with the gyro
center drift.

AXISYMMETRIC TORI
In axisymmetric tori fields, the symmetry gives a

toroidal invariant pϕ , which can replace the parallel
invariant in the analysis, and the drift orbit can be
projected on a closed curve in the ( , )r z  plane. The
projected gyro center motion determines the radial drift
invariant. These properties are seen by introducing the
poloidal angle 0ζ ,

00
0 0 0 0

00 0

( )
( , , ) ( , )

2 ( ) ( )
p

t

B rB sr s r z
rB r B r

π
ζ θ θ ζ= − + + =

%

% %
, (4)

where 2 2 2
p tB B B= +% % %  and ( , )r zζ  is specified in [1] and

[2]. The relation 0 0 0( , , )r sζ θ = ( , )r zζ  is associated with
the linear dependence of 0 ( , , )r zθ ϕ  and ( , , )s r zϕ  on the
toroidal angle and the toroidal symmetry of the fields,
which implies 0( , )gc gcU U r ζ= , see [1] and [2]. The
projected guiding center motion is determined by

0

0

1 1[ 2( ) ]gct
gc

Udr B BU
dt r BqBB

ε
ζ ζ
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∂ ∂
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where gcUm −= εσ /2v || , 1σ = ±  determines the

direction of the parallel velocity and 0 0( , )c r ζ  is defined
in [2]. In straight systems with rotational symmetry, 0r  is
a motional invariant and such equilibria are omnigenous
with constant values of 2 2

0 /pc B B= %  and /d dtζ .
In axisymmetric tori, passing particles far from a

trapped state have a nearly constant /d dtζ , while ζ
oscillates for a trapped particle, providing a finite banana
orbit width. For each constant values of ε  and µ , the
solution of Eqs. (5a,b), for passing as well as trapped
particles, is a closed curve 0 0( ) ( , , , )r rζ σ ε µ ζ≡  in the
( , )r z  plane, where ζ  is the curve parameter. For
trapped particles, two orbit portions with opposite signs

||v  of   connect at the points where σ changes sign.
The system of guiding center equations provides a

radial invariant (1)
0 ( , )r rI r I= +x v  and a toroidal

invariant pϕ  for the guiding center, which has the same
value as the toroidal invariant of the particle [7].

The general solution of the stationary Vlasov
equation is a function of four (not only three, as often
stated) invariants. In axisymmetric equilibria, a nearly
local Maxwellian distribution function, expressed in
terms of the invariants and thereby as a solution of the
Vlasov equation, can be written

0/ ( )3/ 2 (1)
0

0

2 /( , , , ) ( ) [ ]
( )

B rk T I
r r

B r

mF p I n I e F
k T I

ε
ϕε µ

π
−= + ,

where the correction (1)F , and its contribution to the
toroidal current, has to be determined from detailed
considerations of the transport and heating. With
inclusion of the first order finite radial drift excursions
and neglecting the contribution from (1)F  to the radial
force balance, we obtain 0( )P r⊥ × ≈ ∇ , which
provides a bridge between Vlasov equilibria and ideal
MHD, see [2].

z

yp

R0

y

x

ϕxpθ

ζ

Fig. 2. Outline of the pseudo-toroidal coordinates
( , , )p px y ϕ  and the projected poloidal angle ζ . A

fraction of the particles are mirror trapped in the weaker
field region at the outer part of the torus
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