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In the presence of strong dissipation, the nonlinear interaction of a monoenergetic cylindrical or spiraling electron
beam with a packet of whistlers or lower hybrid waves differs considerably from the nondissipative case. The evolution
of the beam-waves system exhibits a strong tendency to self-organization and leads to the formation of electron bunches
continuously decelerated by waves. Strong dissipation prevents the phase mixing required for the quasilinear theory,
keeps waves' phases in the packet correlated and allows the formation of dynamically stable bunches. The nonlinear
model developed here considers whistler and lower hybrid waves emission through Cherenkov and cyclotron
resonances by a density modulated thin electron beam.

1. Introduction

    The study of energetic beam interaction with
electromagnetic waves in magnetized plasmas is
motivated by experiments involving electron beam
injection in laboratory and space plasmas [1-4]. For
example, emissions of VLF (Very Low Frequency) waves
by modulated and pulsed electron beams injected by
satellites in the Earth's ionosphere and magnetosphere
were observed by several space active experiments [1,2].
    Beam-whistler interaction in boundless magnetized
space plasmas and in finite size plasma experiments can
be very different. This interaction becomes more specific
if the beam radius is comparable to or less than the
perpendicular wavelength of the radiated whistler, what is
the typical situation in space experiments involving beam
injection. In previous theoretical studies considering such
a thin beam [5], whistler emissions through Cherenkov
resonance have shown the crucial role of wave radiation
out of the bounded beam volume to infinity as an
effective dissipation mechanism, which strongly modifies
the energy exchange between resonant beam particles and
waves (wave packet or quasi-monochromatic wave)
during the electron trapping process and throughout all
the system's nonlinear evolution. In the presence of strong
dissipation, the nonlinear interaction of a monoenergetic
electron beam with a single wave differs considerably
from the classical nondissipative picture [6]: it was shown
that the beam-wave system exhibits a strong tendency to
self-organization [7-9]. Indeed, dissipative effects - due to
collisions in plasma or to effective wave radiation out of
the thin beam volume - make the system not conservative
and, as a result of the irreversible loss of wave momentum
and energy, prevent the periodic energy exchange
between beam and wave. At the same time, the nonlinear
evolution of resonant particles is characterized by the for-
mation of dynamically stable electron bunches that are
continuously decelerated and supply energy to the wave
through resonant Cherenkov interaction owing to a self-
adjusted nonlinear shift of the parallel wave number [7,8].
    In the case of a wave packet, bunched particles

exchange energy with several waves and one could expect
that the beam-waves system should evolve according to
the quasilinear theory (diffusion to lower velocities and
plateau formation). However, presented theoretical
models and related numerical simulations show that, due
to the strong losses of wave energy, the phases of all
waves can become strongly correlated and thus can
prevent the stochastic phase mixing required for the
validity of quasilinear theory.
    In theoretical models presented below, electromagnetic
wave fields are calculated in a semi-analytical way as
functions of a given electron beam current distribution; at
the same time, the full nonlinear dynamics of particles
moving in the background magnetic field and the
calculated wave fields is considered. This approach
allows to avoid expensive Particle-In-Cell (PIC) simu-
lations (e.g., [10] ) and to develop clear physical effects.
    The paper studies the interaction of a modulated
spiraling or cylindrical electron beam with
electromagnetic waves at Cherenkov and cyclotron
resonances (normal and anomalous Doppler) in a
magnetized plasma. The beam is injected along the
ambient magnetic field B=B0 z or with a pitch-angle θp.
All beam electrons are magnetized and supposed not to
leave the magnetic tube of radius R. Outside this tube,
waves are propagating free as cylindrical waves out of the
beam volume to infinity. Inside the tube, waves’
amplitudes are supposed to evolve slowly along the
magnetic field, in the z direction. The beam is supposed to
keep a spiral structure due to Larmor rotation for θp>0; its
initial thickness is much less than the spiral radius. Such
structure was often considered theoretically [7,11] and
observed in laboratory experiments [2,12] as well as in
space [13].

2. Models of wave-beam interaction
We present here nonlinear models developed to study
resonant wave emission by a density modulated thin
electron beam of small radius rb  and fixed modulation
frequency ω. The evolution of the beam current
modulation is considered self-consistently as the result of
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nonlinear beam particles’ motion in waves’ fields. All
nonlinearity is held in electrons' motion. As the waves are
excited by an electron beam filling a cylindrical magnetic
tube, the system is supposed to have cylindrical or, more
generally, spiral symmetry, especially in the region
outside the beam. Moreover, because resonant emission
by a beam modulated at a fixed frequency is considered,
main features of waves’ structure outside the beam are
determined by the resonance condition. Namely, wave
fields outside the beam are described as cylindrical waves
whose wave numbers are determined by dispersion
properties and resonance condition k v nz bz c= −ω ω
(where n is the cyclotron harmonic number, kz  the
parallel wave number and vbz  the parallel beam velocity;
ω and ωc are the wave and the electron cyclotron
frequencies). Slow changes in beam velocity provide slow
changes in waves’ phase velocities, wave vectors and
amplitudes. If waves’ parameters are known at the
boundary of sources suited inside the cylindrical tube,
then, outside the beam region, waves can be readily
described as linear cylindrical waves propagating freely to
infinity. The more difficult problem to obtain a compact
description of waves’ behavior in the interaction region is
considered below.
    We consider electromagnetic waves in the frequency
range ωlh << ω < max{ωc, ωp} (ω lh  and ω p are the lower
hybrid and the plasma frequencies) propagating almost
normally to the ambient magnetic field, that is, kz<<k⊥ ,
where k⊥  ≈ k is the perpendicular wave number. These
waves are so-called sheared whistlers. In the electrostatic
limit k c p

2 2 2> ω , they become lower hybrid waves. The
emitted waves evolve self-consistently with the beam
modulation and their spatial structure is characterized by
slow variations along the distance z from the injector.
Partial simulation is used to describe the slow evolution
of their amplitudes and phases.
    As first case, let us present the so-called electrostatic
model. Ions are supposed to be motionless and the fluid
plasma description provides the main equation describing
the evolution of the wave’s scalar potential ϕ
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where nb is the beam density. In the case of steady state
modulated beam injection and for a quasi-monochromatic
cylindrical wave ϕ=Σϕnexp(ikzz+inθ-iωt), the balance
between wave field energy outflow to infinity and energy
gain resulting from the beam-wave interaction can be
written as
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where the right hand side represents the work of the beam
on the wave; Pz and Pr are the parallel and radial fluxes of
wave energy. If r exceeds the radius of any beam electron
(r >rb),  Pr does not depend on r.
    Wave equations are linear and their general solution for
an arbitrary beam electrons distribution can be obtained in
integral form with the help of Green functions as
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η θ ω= + −k z n tz  is the phase along the particle
trajectory. Potentials and fields can be calculated if the
beam particles’ distribution is known. Using the
conservation of phase space volume along the electrons'
trajectories, one can express the integral term of (3) as a
summation on N macro-particles as
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During the nonlinear evolution of the beam-wave system,
this equation is solved together with the Newton-Lorentz
equation for each beam electron moving in the electric
fields of the lower hybrid wave.
    A similar approach can be used for whistlers in the
general electromagnetic case when k c p

2 2 2≤ ω . Then,
wave fields are described with the help of the electrostatic
potential and the electromagnetic potential Az (A⊥ <<Az).
For steady state modulated beam injection, the set of
equations for sheared whistler waves is
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where jb (jbz, jb⊥ ) is the beam current. If the beam
modulation is changing slowly, that is ∂ ∂ <<n z k nb z b/ ,
one can separate in the potential fast phase and slow
amplitude variations. Finally, one obtains explicit
expressions for potentials in terms of Green functions and
summation on macro-particles, which are used for
numerical simulation of wave-beam interaction for any
resonance and beam structure. Calculations of Green
functions are rather complex and will be presented
elsewhere. For a thin beam and Cherenkov resonance,
properties of whistler dispersion allow the beam to be in
resonance simultaneously with several waves having the
same phase velocity but different frequencies ω ωm c<<
and wave numbers k km zm⊥ >> . This situation is realistic
as the spectral analysis of the modulated current of beams
injected from guns on board satellites or in vacuum
chambers typically exhibits not only the modulation
frequency but also higher harmonics; moreover,
modulation at different frequencies can also be applied
simultaneously to the beam density.
    At a given frequency ωm, there are two resonant
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whistlers with the same kzm (verifying the Cherenkov
resonance condition k vzm bz m= ω ) and with two different
perpendicular wave numbers k1m and k2m. In the case of a
thin beam and for any wave in a packet of M sheared
whistlers, all fields and potentials inside and outside the
beam can be described in terms of potential amplitudes
Ψm at the beam center. Using Maxwell equations,
matching conditions at the beam boundary as well as
conditions of free wave propagation to infinity, one can
find the M equations describing the self-consistent
nonlinear evolution of whistlers' amplitudes along the
beam, including the slow modulation of the parallel beam
current jbz as a source term
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θ ω θj m k z t mzm j m j, = − ≡ , where θ ωj k z tz j= −1 1  is
the phase of the particle j in the fields of the wave
harmonic m. The complex factor κ m  depending on rb and
k⊥ m describes new effects of energy loss by wave
emission out of the beam to infinity : whereas Re(κ m )
represents the rate of emission, Im(κ m ) controls the
reversible exchange of the wave field energy inside the
beam with that of the outside waves. The right hand side
of (7) describes the nonlinear interaction of the harmonic
m with resonant electrons; it results from the averaging of
the beam current over the beam cross section. The slow
evolution of the current results from variations of
particles' phases θj due to the parallel motion of electrons
in the M wave fields
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where Er,θ,z and Br,θ,z are respectively the total electric and
magnetic fields at the particle position (r,θ,z); am(r)
depends on the parameters of the beam-plasma system.

3. Numerical simulation results

    As a full analytical study is impossible, equations have
been solved by a numerical code for different physical
parameters and resonance conditions k v nz bz c= −ω ω ,
that is, Cherenkov resonance (n=0) as well as anomalous
(n=-1) and normal (n=1) Doppler shifted cyclotron
resonances.

3.1 Cherenkov resonance
    For Cherenkov resonance, numerical results obtained in
the case of a spiral beam are qualitatively similar to those
obtained for a cylindrical beam interacting with a whistler

wave [7] or a lower hybrid wave. At a small distance
from the injector, the wave amplitude is growing and, at
the same time, the formation of a vortex corresponding to
resonant particle trapping by the wave starts in the phase
space. Then, in contradiction with the well known case of
a conservative system (no dissipation), the energy given
by the beam to the waves cannot be returned to them due
to the irreversible loss of wave energy and momentum: no
quasi-periodic exchange of energy between waves and
trapped particles is observed. A part of resonant particles
is gathered in a continuously decelerated bunch. At the
same time, the phase velocity of waves is self-adjusted
owing to a nonlinear shift of their parallel wave number
so that Cherenkov resonance with bunched particles is
held. Thus, dynamically stable nonlinear bunches are
formed. Beam energy is continuously transferred to the
wave which damps due to electrostatic wave dissipation
out of the bounded beam volume.
    Figure 1 shows, as a function of the normalized time τ
(proportional to the distance z from the injector τ∝ z/vbz),
(a) the variation of the normalized wave energy Ew
integrated on the total beam cross-section, (b) the total
normalized longitudinal beam momentum Pz, and (c)-(d)
phase spaces ηp-vz at different τ showing an electron
bunch continuously decelerated along z.
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Fig. 1. Nonlinear interaction of a modulated electron
beam with a whistler wave (Cherenkov resonance n=0).

The bulk of nonresonant particles is heated, what is
confirmed by the growth of parallel temperature (not
shown here). A small decrease of the electrons'
perpendicular velocity occurs, corresponding to the
decreasing of their rotation radius. Indeed, resonant
particles are subjected to strong interaction with the wave
to which they give parallel energy, while their loss of
perpendicular energy is much weaker. Let us also notice
the formation of secondary vortices in phase space (see
Fig. 1d), as observed in our previous works.
    In the case of a single quasi-monochromatic whistler,
continuous bunch deceleration and Cherenkov resonance



251

tuning processes can be explained using a simple model
describing bunches as nonlinear resonant structures. At
the asymptotic stage of the interaction, a well-formed
bunch can be considered as a single particle with a weight
ntr=Ntr/N proportional to the number Ntr of particles it
contains; current modulation is only due to the bunched
particles. As confirmed by the numerical solution, wave
and bunch remain in phase. Then, bunch interaction with
the dissipating wave results from the normalized form of
(7)-(8)

A n
v
tr≈ − sin ,φ   dv

d
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2

2 2
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where A A ei= φ is the normalized wave amplitude and

v d d≈ − φ τ/  the nonlinear shift of phase velocity. Even
in the single wave case, not only one but several bunches
with different velocities can exist; they are resonant with
waves present in the Fourier spectrum: indeed, slow
changes in the main wave characteristics can be
considered as a result of the superposition of several
waves whose wave numbers differ slightly. Similar
considerations are valid for lower hybrid waves.
    The case of a beam-wave packet interaction is more
complex, as the different waves can trap successively
electrons and as result form a more wide variety of
bunches; those can be accelerated or decelerated
according to their phase matching with waves. As
bunches' velocity decreases continuously, the bunched
electrons can start interactions with waves of smaller
phase velocities than the initial trapping wave. Each
formed bunch makes a finite contribution to the amplitude
Am of each harmonic m according to the
phenomenological estimation (derived from (8), with δm

standing as normalized form of κm)
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where nl is the relative number of particles inside the
bunch l and Mb the total number of bunches; θb is the
phase of the bunch l (all particles it contains have roughly
the same phase). When the formed bunches have similar
characteristics, their behavior with respect to the waves is
roughly equivalent and all can be resonant with waves.
When one bunch contains much more electrons than
others, it dominates the system's dynamics as only it
interacts strongly with waves. Other bunches participate
weakly to the radiation process, even though they are in
resonance with waves. But, as each Am results from the
sum of components resonant with each bunch (see (10)), a
non vanishing (on average) resonant deceleration force

2 2/l bF d dθ τ≈  acts on particles in bunch l; since the
phases of all waves are well correlated, this force is
proportional to the relative number of particles in the
bunch, Re bim

l m lmF iA e nθ ∝ ∝ ∑ .

    Finally, beam particles are definitively separated in two
distinct groups: the dynamically stable bunches
continuously decelerated in resonance with the waves and

a bulk of non resonant electrons, presenting more or less
diffusion to lower velocities. The number of particles in
each bunch, as well as in the bulk, is established during
the trapping process by waves and the subsequent
bunches' formation; it depends on beam parameters and
initial conditions. This picture is different from plateau
formation in velocity distribution, as expected from
quasilinear theory; additional nonlinear stable structures
are present in the velocity distribution which allow the
beam to radiate energy out of its volume at a significant
distance from the injection point. Thus, strong effective
dissipation can prevent the stochastic phase mixing
required for the validity of quasilinear theory and keep the
phases of all waves well correlated. Sequences of bunches
propagating together with forced electric field
perturbations (modulated wave packet) can be considered
as dissipative nonlinear Van-Kampen modes.
    Figure 2 presents the variation as a function of τ of (a)
the amplitudes’ evolution of M=12 waves, (b) the
corresponding average parallel momentum Pz and, (c)-(f)
phase spaces ηp-vz at four τ (τ(c)< τ(d) < τ(e) < τ(f)).
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Fig. 2. Cherenkov resonant interaction of a thin
modulated electron beam with a packet of whistlers in
presence of dissipative effects.

3.2 Beam-wave interaction at cyclotron resonances
    For cyclotron resonances, simulations of beam-lower
hybrid wave interaction show results which are partly
analogous to the Cherenkov case: the similar partial
trapping process occurs as well as the subsequent bunch
formation, which happen now in the total phase
η θ ω= + −k z n tz  (n≠0). Let us point out a remarkable
conclusion that follows from equation (2). It shows that
the rate of energy exchange between wave and beam
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particles is a fraction ( )/ cnω ω ω∝ −  of the rate of

change of parallel beam energy; the interaction of
electrons with wave can roughly be considered as their
scattering on the static potential. So, at cyclotron
resonances, contrary to the Cherenkov case, (i) resonant
electrons only redistribute their perpendicular and parallel
energies and only a small part of it, proportional to ω /ωc,
is transferred to the wave; (ii) because wave gains energy
from the beam, parallel energy of electrons is decreasing
(resp. increasing) for n=1 (resp. for n=-1). This is
confirmed by the numerical solution and the equation of
electron motion.
    The formation of electron bunches and their
deceleration along z with respect to the heated bulk,
together with wave excitation and damping, are illustrated
on Fig. 3 which shows the variation with τ of (a) Ew, (b)
Pz , ∆E⊥  (average perpendicular energy change) and ∆E
(total beam energy change), and (c)-(d) phase spaces ηp-vz
and ηp-v⊥  at fixed τ.
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Fig. 3. Interaction of a modulated electron beam with a
lower hybrid wave (Doppler resonance n=1).

4. Conclusion

    Numerical simulations of beam interaction with a finite
number of waves in presence of effective dissipation have
shown that, independently of the dissipation type and the
nature of the considered waves, the nonlinear evolution of
the particles' distribution has a tendency to self-
organization, leading to the formation of highly
concentrated electron structures. These bunches of
resonant particles are decelerated continuously by friction
on waves and their dynamics shows noticeable stability in
a range of time exceeding several characteristic times of
their formation. When the number of waves in the packet
is large and the wave spectrum is continuous, quasilinear
diffusion of particles in velocity space and plateau
formation in the velocity distribution are usually expected
to occur during the beam relaxation stage. In the strongly
dissipative case however, our calculations show the

coexistence in the velocity distribution of a wide and very
low plateau together with small peaks (at lower
velocities) corresponding to stable electron bunches,
which typically contain around 1-10% of the total number
of particles. On the other hand, the plateau itself exhibits
a fine structure consisting in a large set of small and
almost indistinguishable bunches. At the asymptotic
stage, the deceleration rate of bunches and,
correspondingly, their whistler emission rate is
proportional to the number of particles they contain. If the
total number of particles gathered in bunches is not very
small, the whistler energy emitted during the long
asymptotic stage of beam relaxation can exceed the
whistler emission in the initial stage of the interaction
(i.e., near the injector) although the latter is much more
intense. Our calculations show that one possibility to
control the amount of particles organized into bunches in
order to increase the emission efficiency is to
premodulate the beam at one or several given frequencies.

5. References

1. J.R. Winckler The applications of artificial electron
beams to magnetospheric research // Rev. Geophys. Space
Phys. 1980. vol. 18. p.  659.
2 Z.. Nemecek et al. Artificial electron and ion beam
effects : Active Plasma Experiment // J. Geophys. Res.
1997. vol. 102. p. 2201.
3 C.. Krafft et al. Whistler emission by a modulated
electron beam  // Phys. Rev. Lett. 1994. vol. 72. p. 649.
4. M. Starodubtsev, C. Krafft Resonant cyclotron
emission of whistler waves by a modulated electron beam
// Phys. Rev. Lett. 1999. vol. 83. p. 1335.
5. C. Krafft, A. Volokitin Nonlinear interaction of
whistler waves with a modulated thin electron beam //
Phys. Plasmas. 1998. V. 5. P. 4243.
6. T.M. O'Neil et al. Nonlinear interaction of a small cold
bam and a plasma // Phys. Fluids. 1971. V. 14. P. 1204.
7. A. Volokitin et al. Nonlinear interaction of a thin
modulated electron beam with a quasi-resonant whistler
wave // Phys. Plasmas. 1997. V. 4. P. 1.
8. C. Krafft et al. Nonlinear dynamics of electron bunches
in presence of dissipative effects // J. Plasma Phys. 1999.
V. 61. P. 275.
9. A.A. Ivanov et al. Nonlinear theory of the interaction
between a monoenergetic beam and a dense plasma //
Sov. Phys. JETP. 1973. V. 36. P. 887.
10. K.I. Nishikawa et al. Three-dimensional simulation of
whistler mode excited by the Spacelab 2 electron beam //
J. Geophys. Res. 1989. V. 94. P. 6855.
11. K.L. Harker, P.M. Banks Near fields in the vicinity of
pulsed electron beams in space // Planet. Space Sci. 1987.
V. 35. P. 11.
12. G. Golubyatnikov, R.L. Stenzel Cyclotron harmonic
lines in magnetic fluctuations of spiraling electrons in
plasmas // Phys. Rev. Lett. 1993. V. 70. P. 940.
13. P.M. Banks, W.J. Raitt Observation of electron beam
structure in space experiments // J. Geophys. Res. 1988.
V. 93. P. 5811.


