УДК 533.9 РАСЧЕТ НЕКОТОРЫХ ВАРИАНТОВ ЭЛЕКТРОСТАТИЧЕСКИХ ПЛАЗМЕННЫХ ЛИНЗ

В.И. Бутенко, Б.И. Иванов ННЦ ХФТИ, Харьков, 61108, Украина (E-mail: ivanovbi@kipt.kharkov.ua)

Рассмотрены задачи фокусировки ионных пучков: 1. протяженной линзой Морозова, 2. короткой линзой Морозова, образованной кольцом с током, 3. протяженной однородной линзой Морозова, 4. протяженной линзой Морозова с неоднородным программируемым магнитным полем для повышения эффективности и силы линзы.

1. Введение

В настоящее время имеется значительная потребность в разработке устройств для фокусировки интенсивных ионных пучков высоких энергий для решения актуальных научных и технологических задач (инерциальный термоядерный синтез на тяжелых и легких ионах, исследование радиационной устойчивости материалов, имплантационная металлургия, радиационная терапия и т.д.). Для этой цели в основном применяются квадрупольные магнитные линзы. В последнее время начали использоваться плазменные линзы, фокусирующая сила которых значительно больше; при этом имеется также возможность фокусировки сильноточных ионных пучков, поскольку заряд фокусируемого пучка в такой линзе скомпенсирован. С ростом энергии и тока ускоряемых пучков плазменные линзы могут потеснить традиционные.

Работы по плазменным линзам ведутся во многих научных центрах, таких как Лоуренсовская Лаборатория в Беркли, CERN, GSI (Дармштадт), ИФ НАНУ и др. (см., напр., один из последних обзоров [1]). В настоящее время известно три типа таких линз: электронная (электростатическая) линза Габора, токовая (магнитная) плазменная линза, электростатическая плазменная линза Морозова. Что касается истории вопроса, то фокусировка пучков заряженных частиц собственным магнитным полем была рассмотрена в 30-х годах Альфвеном и Беннетом. В 1947 г. Габор предложил линзу с пространственным зарядом для электростатической фокусировки ионных пучков [2], представляющую собой цилиндрический столб электронной плазмы, удерживаемый магнитным полем. В 1950 г. Пановски и Бейкер провели эксперименты по фокусировке высокоэнергетичных ионных пучков магнитной плазменной линзой [3]. При этом фокусировка обеспечивалась азимутальным магнитным полем, которое создавалось продольным током в плазменном столбе. В 1979-80 гг. экспериментальные исследования магнитной плазменной линзы проводились в ИФ АН УССР [4]. В последнее время линзы такого типа успешно использовались в CERN, GSI, ННЦ ХФТИ [5-11].

В 80-х годах для фокусирования электронных пучков сверхвысоких энергий были предложены «пассивные» плазменные линзы [12,13], основанные на концепции магнитной самофокусировки; в дальнейшем эта концепция была распространена на более перспективные адиабатические «пассивные» плазменные линзы [14]. Адиабатическая магнитная плазменная линза для медленного сжатия ионного пучка (на длине нескольких бетатронных колебаний) была рассмотрена в работе [15]. Следует отметить, что в [14, 15] критерием адиабатичности принималась малость изменения параметров плазменной линзы на длине фокусного расстояния (слабая неоднородность). В работах [9-11] для повышения эффективности фокусировки применено программируемое внешнее магнитное поле и исследованы адиабатические линзы, параметры которых существенно изменялись на длине фокусного расстояния (сильная неоднородность).

В 60-х годах А.И. Морозов предложил плазменную электростатическую линзу, в которой магнитные поверхности являлись эквипотенциалями электрического поля [16, 17]. В дальнейшем это направление успешно развивалось в экспериментальных работах группы А.А. Гончарова (ИФ НАНУ) для фокусировки ионных пучков с энергией десятки кэВ [18-23].

В предлагаемой работе, в ее втором разделе, дано краткое рассмотрение протяженной линзы Габора.

В третьем разделе проведен расчет фокусировки ионного пучка линзой Морозова, образованной кольцевым током в плазме. Имея в виду важность этой задачи для расчетов электростатических плазменных линз, она рассмотрена более подробно, чем в работе [17], с учетом непараксиальности фокусируемого пучка и точного выражения для магнитного поля.

В четвертом разделе рассмотрена длинная линза Морозова, помещенная в программируемое магнитное поле, которое по длине плазменной линзы изменяется таким образом, чтобы радиус фокусирующего канала был близок к радиусу фокусируемого пучка и уменьшался по мере уменьшения радиуса последнего. При этом возрастает напряженность фокусирующего поля, что в итоге увеличивает эффективность и силу линзы.

2. Протяженная линза Габора

Линза Габора фактически является первой линзой с пространственным зарядом, которая начала применяться для электростатической фокусировки ионных пучков. Обычно эта линза рассматривается как «тонкая». При этом фокусное расстояние рассчитывается в «импульсном» приближении, без учета радиального смещения частиц в линзе. Ниже дано краткое рассмотрение протяженной линзы Габора.

Для однородной электронной линзы выражение для электростатической силы, фокусирующей протоны, имеет вид: $F_r = -2\pi ne^2 r$, где n – электронная плотность. Уравнение радиального движения для фокусируемых протонов с массой M и скоростью v:

$$r'' + k_G^2 r = 0, \ k_G^2 = \frac{2\pi n e^2}{M v^2},$$
(1)

откуда уравнение траекторий и фокусное расстояние в самой линзе определяется выражениями:

$$r = r_0 \cos k_G^2 z$$
, $L_f = \frac{\pi}{2k_G} = \frac{\pi v}{2e} \sqrt{\frac{M}{2\pi n}}$. (2)

Если длина линзы $l < L_f$, то $l_f = l + k_G^{-1} \operatorname{ctg} k_G l$, а при $k_G l << 1$ (например, при потенциале инжектора много больше фокусирующего потенциала линзы) получим известное выражение для фокусного расстояния «тонкой» линзы Габора [1, 2]: $l_f = \frac{M v^2}{2\pi n l e^2}$.

3. Линза Морозова, образованная кольцом с током

В плазменной электростатической линзе Морозова магнитные поверхности являются эквипотенциалями электрического поля [16, 17]. Электрические потенциалы вводятся в плазму посредством кольцевых электродов, благодаря чему в сильном магнитном поле образуется система «заряженных» магнитных поверхностей. Предполагается, что ток поперек магнитного поля отсутствует, а величина и пространственное распределение напряженности электрического поля в плазме полностью определяются геометрией магнитного поля и внешними потенциалами. Экспериментальные исследования в общем подтверждают эти предположения [17, 18-23], однако, вопрос состоит в выяснении причин аберраций и их уменьшении.

В большой работе А.И. Морозова и С.В. Лебедева [17] теоретически исследованы различные вопросы плазмооптики, в том числе осевые электростатические плазменные линзы. В частности, дана оценка фокусного расстояния для простейшей плазменной линзы, образованной кольцом с током. Имея в виду важность этой задачи для практических расчетов электростатических плазменных линз, рассмотрим ее более подробно, с учетом непараксиальности фокусируемого пучка и точного выражения для магнитного поля.

Магнитное поле кольцевого тока *J* описывается азимутальной компонентой вектор-потенциала [24,25]:

$$A_{\varphi} = \frac{4J}{ck} \sqrt{\frac{a}{r}} \left[(1 - \frac{k^2}{2}) K(k) - E(k) \right];$$

$$k^2 = \frac{4ar}{(a+r)^2 + (z-l)^2},$$
 (3)

где *а* радиус витка, *l* его положение на оси *z*, *K* и *E* полные эллиптические интегралы 1-го и 2-го рода.

Следуя [17], введем функцию магнитного потока $\psi = rA_{\phi}$. При этом выражение

$$\psi(r,z) = const \tag{4}$$

является уравнением магнитной поверхности [24, 25].

В линзе Морозова эквипотенциальность магнитных поверхностей определяется соотношением [17]:

$$\Phi = \Phi(\psi) , \qquad (5)$$

где $\,\Phi\,$ - потенциал электрического поля.

Выразим компоненты электрического и магнитного поля через ψ и A_{o} :

$$E_r = -\frac{d\Phi}{d\psi}\frac{d\psi}{dr} ; E_z = -\frac{d\Phi}{d\psi}\frac{d\psi}{dz} = -\frac{d\Phi}{d\psi}r\frac{dA_{\varphi}}{dz}, \quad (6)$$

$$H_r = -\frac{dA_{\varphi}}{dz}; \ H_z = \frac{1}{r}\frac{d}{dr}rA_{\varphi}.$$
(7)

Отсюда получим:

$$E_{z} = \frac{d\Phi}{d\psi} H_{r}r, \ E_{r} = -\frac{d\Phi}{d\psi} H_{z}r$$
(8)

Рассмотрим ряд случаев зависимости Φ от ψ .

Случай 1. В работе [17] очень коротко рассмотрена плазменная линза, образованная кольцом с током, когда Φ пропорционально ψ :

$$\Phi = b\psi = brA_{\omega}, \text{ rge } b = const , \qquad (9)$$

и приведена оценка ее фокусного расстояния (см. в [17] формулы (1.13) и (3.8)).

Рассмотрим эту задачу подробнее, с применением компьютерного моделирования. Для выполнения условия (9) зададим граничное условие в виде распределения потенциала на цилиндрической поверхности с радиусом R (на практике оно задается подачей потенциалов на систему кольцевых электродов [18-23]):

$$\Phi(R,z) = bRA_{\omega}(R,z) \tag{10}$$

Электрические и магнитные поля связаны соотношениями, которые следуют из (8) и (9):

$$E_z = brH_r, \quad E_r = -brH_z \tag{11}$$

Константа *b* определяется заданием (посредством тех же электродов) соответствующего значения напряженности электрического поля E_{r0} в точке (r_0 , z_0):

$$b = -\frac{E_{r_0}}{r_0 H_z(r_0, z_0)}; \qquad (12)$$

от этой константы зависит сила линзы.

Для ионов с массой *M* и зарядом *q* уравнения движения имеют вид:

$$M\frac{d^2r}{dt^2} = -qE_r, \qquad (13)$$

$$M\frac{d^2z}{dt^2} = -qE_z \tag{14}$$

(Азимутальное движение пока не учитываем).

Начальные условия:

при t=0 z=0, $v_r=0$, $v_z=v_0$, $r=r_0$, (15) где радиус инжекции иона r_0 задается от 0 до величины, несколько меньшей радиуса кольца a.

Результаты расчета траекторий ионов приведены на рис. 1, откуда видно, что фокусируются только параксиальные частицы. Непараксиальные ионы (которых намного больше, т.к. их количество в слое с радиусом инжекции r_0 пропорционально r_0), «перефокусируются», причем чем больше их начальный радиус, тем ближе к началу координат точка их пересечения с

Рис.1. Траектории протонов с энергией 20 кэВ, радиус пучка 3.5 см, при фокусировке линзой Морозова, создаваемой токовым витком (радиус 4 см, координата z = 0). Задано распределение потенциала по магнитным поверхностям $\Phi \sim rA_{\varphi}$ ($\Phi_{max}=3$ kV).

осью *z*. Это связано с тем, что при приближении к витку потенциал $\Phi \sim rA_{\varphi}$ существенно возрастает.

Случай 2. Рассмотрим вариант, когда в плоскости витка $z=z_0$ задается линейное нормированное распределение радиального электрического поля:

$$E_r(r, z_0) = E_r(r_0, z_0) \frac{r}{r_0} = E_{r_0} \frac{r}{r_0}.$$
 (16)

В этом случае имеем соотношения:

$$\frac{d\Phi(\psi(r,z_0))}{d\psi} = -\frac{E_{r_0}}{r_0 H_z(r,z_0)},$$
(17)

$$\Phi(\psi(r,z_0)) = -\frac{1}{2} \frac{E_{r_0}}{r_0} r^2 , \qquad (18)$$

$$\Psi(r, z_0) = rA_{\varphi}(r, z_0) \tag{19}$$

На цилиндрической поверхности с радиусом *R* зададим граничное условие в виде распределения электрического потенциала:

$$\Phi(\psi(R,z)) = \Phi(RA_{a}(R,z))$$
(20)

Использовав соотношения (17-20) при определении электрических полей из формул (8), а также уравнения движения (13, 14) и начальные условия (15), можно вычислить траектории ионов. Результаты расчетов на компьютере представлены на рис. 2.

Из рис. 2 следует, что во втором случае (как и в первом) фокусируются только параксиальные частицы. Непараксиальные ионы (которых намного больше), на этот раз «недофокусируются», причем чем больше их начальный радиус, тем дальше точка их пересечения оси *z*. Это связано с тем, что из-за кривизны магнитных поверхностей внешние ионы недостаточное время находятся в области сильных фокусирующих полей. (В случае параллельных магнитных поверхностей при $\Phi \sim r^2$ была бы идеальная фокусировка, см. раздел 4).

Случай 3 (введение поправки к случаю 2). В формулу (16) в распределение радиального электрического поля по радиусу добавляется член 3-ей степени по *r* и, соответственно, в распределение потенциала добавляется член 4-ей степени по *r*. Коэффициент при этом дополнительном члене нами пока просто подбирается. При этом можно получить улучшение фокусировки (см. рис. 3). В принципе, задачу нахождения

Рис. 2. Траектории протонов с энергией 20 кэВ, радиусом пучка 3.5 см, при фокусировке линзой Морозова, создаваемой токовым витком (радиус 4 см, координата z = 0). Распределение потенциала по магнитным поверхностям $\Phi \sim r^2$ при z = 0 ($\Phi_{max}=3$ kV).

оптимального распределения электрического поля можно решить, разработав специальный алгоритм.

Следует отметить, что от задачи с одним токовым витком несложно будет перейти к задаче с соленоидом произвольного вида, воспользовавшись принципом суперпозиции полей.

Рис. 3. Траектории протонов с энергией 20 кэВ, радиус пучка 3.5 см, при фокусировке линзой Морозова, создаваемой токовым витком (радиус 4 см, координата z = 0). Задано оптимизированное распределение потенциала при Φ_{max} =3 kV.

4. Протяженная линза Морозова

В случае протяженной линзы Морозова (т.е., когда длина соленоида значительно больше его диаметра и влиянием его концов на фокусировку частиц можно пренебречь) кольцевые электроды можно разместить вблизи торцов линзы на боковой цилиндрической поверхности, т.е. на входе и выходе магнитных силовых линий. Для того, чтобы локализовать область размещения кольцевых электродов, вблизи концов соленоида целесообразно применить встречно включенные катушки [18-23], которые увеличивают отклонение магнитных силовых линий от оси. В случае, когда требуется до минимума свести сферическую аберрацию (например, при фокусировке широкоапертурного пучка в пятно малого диаметра), целесообразно рассмотреть возможность размещения на входе и выходе линзы, в области однородного магнитного поля, системы тонких концентрических электродов переменного радиуса, расположенных в плоскости, перпендикулярной оси. При этом желательно, чтобы формирующая система электродов ионного инжектора (например, типа MEVVA [26]) была геометрически подобна системе электродов линзы и прикрывала ее от потока ионов своей «тенью». Следует отметить, что в имплантационных технологиях не допускается тепловое повреждение образцов, следовательно, и электроды линзы не пострадают. При необходимости теплового воздействия на образец нужно учитывать, что плотность потока ионов на него существенно выше, чем на электроды. Кроме того, образец можно разместить в фокусе пучка, находящегося внутри линзы (см. ниже) и тем самым обезопасить электроды на выходе линзы.

Выражение для фокусирующей силы электростатического поля в линзе Морозова имеет вид:

$$F_e = eE_r = -q \frac{\partial \varphi(r, z)}{\partial r}$$
(21)

На большей части длины рассматриваемой однородной линзы можно посредством электродов, расположенных на торцах (или вблизи торцов), задать распределение потенциала по радиусу $\varphi = \varphi_0 r^2 / a_0^2$ (где a_0 радиус внешней магнитной поверхности, а φ_0 ее потенциал). В этом случае

$$F_{e}(r) = -2q\phi_{0}r / a_{0}^{2}$$
 (22)

При этом уравнение движения для фокусируемых ионов будет иметь вид:

$$\frac{d^2 r}{dz^2} + k_M^2 r = 0$$
, где $k_M^2 = \frac{2q\phi_0}{Mv^2 a_0^2}$ (23)

Тогда уравнение траекторий ионов, фокусируемых в линзе, имеет вид: $r = r_0 \cos k_M z$ (где r_0 - радиус инжекции иона), откуда длина фокусировки в линзе:

$$L_f = \pi (2k_M)^{-1} = \frac{\pi v a_0}{2} \sqrt{\frac{M}{2q\phi_0}}$$
(24)

Если длина линзы $l < L_f$, то $l_f = l + k_M^{-1} \operatorname{ctg} k_M l$, а при $k_M l << 1$ (например, при потенциале инжектора много больше потенциала линзы) получим фокусное расстояние, соответствующее случаю «тонкой» линзы: $l_f = (k_M^2 l)^{-1}$. Отметим, что приведенные выражения для длины фокусировки не зависят от радиуса инжекции и пригодны для широкоапертурных пучков.

В протяженной линзе Морозова может оказаться полезным увеличение внешнего магнитного поля от входа к выходу линзы таким образом, чтобы радиус определенной магнитной поверхности (которую мы назовем граничной) совпадал с радиусом фокусируемого пучка. При этом, по мере уменьшения радиусов концентрических магнитных поверхностей, будет возрастать напряженность фокусирующего поля, что в итоге увеличит эффективность и силу линзы.

В этом случае задачу будем решать в параксиальном приближении (и для частиц, и для магнитного пля). При этом уравнение магнитных поверхностей имеет вид:

$$a^{2}(z) = \frac{a_{0}^{2}B_{z}(0)}{B_{z}(z)},$$
(25)

где a(z) - изменяющийся радиус магнитной поверхности, $B_z(z)$ - продольное магнитное поле на оси, $B_z(0)$ и a_0 определяются граничными условиями при z=0.

Из соотношения (25) легко установить, что если выделенные нами магнитные поверхности эквидистантны в некотором сечении, то они будут таковыми и в любом другом сечении (хотя расстояние между ними может изменяться). Поэтому, если мы задали квадратичное распределение потенциала по радиусу в начальной части линзы (т.е. при z = 0), то оно будет таковым в любом ее сечении, что требуется для фокусировки без сферической аберрации, поскольку при этом сила электрического поля, отклоняющая ион к оси, пропорциональна его расстоянию от оси.

В таком случае, при заданном посредством электродов линзы распределении потенциала по радиусу $\varphi = \varphi_0 r^2 / a_0^2$ (здесь a_0 начальный радиус внешней магнитной поверхности при z = 0, а φ_0 ее потенциал), получим, с учетом (25), уравнение движения для фокусируемых ионов:

$$\frac{d^2r}{dz^2} + \frac{B_z(z)}{B_z(0)}k_M^2r = 0$$
, где $k_M^2 = \frac{2q\phi_0}{Mv^2a_0^2}$ (26)

В общем случае траектории фокусируемых частиц рассчитываются на компьютере. Для некоторых частных случаев уравнение (26) имеет аналитическое решение - например, для «колоколообразного» распределения магнитного поля:

$$B_{z}(z) = B_{z}(0) \left[1 + (z/d)^{2} \right]^{-2}$$
(27)

В этом случае уравнение (26) принимает вид:

$$r'' + k_{M}^{2} r \left[1 + \left(z / d \right)^{2} \right]^{-2} = 0$$
 (28)

Решение уравнения (28), известное из электронной оптики [27], в данном случае можно записать следующим образом:

$$r = \frac{r_0}{\sqrt{1 + k_M^2}d^2} \frac{\sin\left(\sqrt{1 + k_M^2d^2} \operatorname{arcctg} z/d\right)}{\sin\left(\operatorname{arcctg} z/d\right)}.$$
 (29)

При этом координата фокуса ионного пучка, соответствующая r=0, определяется выражением:

$$z_{f} = d \operatorname{ctg} \frac{\pi}{\sqrt{1 + k_{M}^{2}} d^{2}}$$
(30)

Численные оценки, основанные на приведенных формулах, показывают, что благодаря сжатию магнитных поверхностей можно получить существенное увеличение фокусирующей силы линзы.

В процессе фокусировки ионов и компрессии граничной магнитной поверхности часть ионов (с большими радиусами инжекции относительно оси линзы) могут оказаться вне канала фокусировки (см. ниже) и не попасть в общий фокус. Для того, чтобы все ионы собрать в фокусе, необходимо определить форму оптимальной магнитной поверхности, которая ограничивает канал фокусировки. После этого нужно рассчитать параметры соленоида для формирования такой магнитной поверхности и определить траектории фокусируемых ионов (см. [9-11], где таким путем рассмотрена магнитная плазменная линза). Искомая магнитная поверхность определяется из условия, что ее радиус (*a*) совпадает с радиусом фокусируемого пучка (*R*). Функции R(z) и, следовательно, $B_{-}(z)$ определяются из уравнения:

$$\frac{d^2 R}{dz^2} + \frac{\kappa}{R} = 0, \, \text{где } \kappa = \frac{2q\phi_0}{Mv^2}.$$
(31)

Решение этого уравнения (с учетом начальных условий: $R = R_0, R' = R'_0$ при z=0) имеет вид:

$$z = \pm \int_{R_0}^{R} \frac{dr}{\sqrt{R_0'^2 - 2\kappa \ln R / R_0}} \,. \tag{32}$$

Использовав подстановку: $t^2 = \frac{{R'_0}^2}{\kappa} - 2 \ln \frac{R}{R_0}$, при-

ведем решение к виду:

$$z = \pm \sqrt{\frac{\pi}{2\kappa}} R_0 \exp\left(\frac{R_0'^2}{2\kappa}\right) \times \left[\Phi\left(\sqrt{\frac{R_0'^2}{\kappa} - 2\ln\frac{R}{R_0}}\right) - \Phi\left(\frac{R_0'}{\sqrt{\kappa}}\right)\right]$$
(33)

где Ф -интеграл вероятности (табулированный).

В случае инжекции параллельного пучка ионов при z=0 имеем $R'_0 = 0$; кроме того, в области фокусировки z > 0. В итоге связь между R и z определяется выражением:

$$z = \sqrt{\pi/2\kappa}R_0 \Phi(\sqrt{2\ln R_0 / R}$$
(34)

Сжатие канала фокусировки происходит до определенного значения R_g , соответствующего координате выхода из линзы Z_g . Дальше происходит инерциальная фокусировка ионов. Координата фокуса определяется выражением:

$$z_{f} = \sqrt{\frac{\pi}{2\kappa}} R_{0} \Phi\left(\sqrt{2\ln R_{0} / R_{g}}\right) + \frac{R_{g}}{\sqrt{2\kappa \ln R_{0} / R_{g}}}.$$
 (35)

Пример расчета. Пусть нужно сфокусировать пучок ионов с энергией 1 МэВ, радиусом $R_0=3$ см. Потенциал граничной магнитной поверхности равен 5 кВ.

Тогда $\kappa = \frac{2q\phi_0}{Mv^2} = \frac{\phi_0}{U} = 0.005$, где U - потенциал,

укоряющий ионы. Пусть в результате фокусировки пучка и одновременного сжатия граничной магнитной поверхности мы получили $R_0 / R_g = e = 2.72$. Воспользовавшись формулой (35), найдем длину линзы $z_g = 45$ см. Из формулы (36) найдем длину фокусировки $z_f = 56$ см, что существенно меньше, чем в однородной линзе, см. формулу (24). Особенно большой

выигрыш - в несколько раз - получается при фокусировке расходящихся пучков. Расчет параметров соленоида и траекторий ионов производится на компьютере по специально разработанным программам [28].

В заключение сделаем следующее замечание. Как отмечено во многих работах, напр. в [1,29], для вакуумных электростатических линз длина фокусировки $\propto (U / \phi_0)^2$, а для «тонких» электронно-плазменных: $\propto (U / \phi_0)$, т.е., намного меньше. В данной работе показано, что для протяженных электронно-плазменных линз она еще меньше: $\propto (U / \phi_0)^{1/2}$, см. ф. (24), (35).

Литература

- 1. G.Hairapetian, // AIP Conf. Proc., 1995, Vol. 335, P.174.
- 2. D.Gabor, // Nature, 1947, Vol. 160, P.89.
- 3. W.Panofsky, W.Baker, // RSI, 1950, Vol. 21, P. 445.
- 4. А.А.Гончаров и др. // ЖТФ, 1980, Т.50, с.2556.
- 5. F.Dothan e.a., // J. Appl. Phys., 1987, Vol.62, P.3585.
- E.Boggasch, J.Jacoby e.a. // Phys. Rev. Lett., 1991, Vol. 66, P. 1705.
- E.Boggasch, A.Tauschwitz e.a. // Appl. Phys. Lett., 1992, Vol. 60, P. 2475.
- 8. V.N.Belan e.a., // RSI, 1998, Vol.69(2), P.1110.
- 9. V.N.Belan e.a., // Proc. of the EPAC'98, P.2106.
- B.I.Ivanov // Problems of Atomic Science and Technology, 1999, No.4, p.81.
- 11. В.Н.Белан и др.,//Физика плазмы, 2000, Т.26, №4.
- 12. T.Katsouleas, // Phys. Rev., 1986, Vol. A33, P.2056.
- 13. P.Chen, // Part. Accel., 1987, Vol. 20, P.171.
- P.Chen, K.Oide, A.M.Sessler, S.S.Yu, // Phys. Rev., Lett., 1990, Vol. 64, P.1231.
- 15. A.Tauschwitz, S.S.Yu e.a. // Proc. of the Conf. «Beams-96», Prague, 1996, Vol. 1, P.91.
- 16. А.И.Морозов, // ДАН СССР, 1965, Т.163, с.1363.
- А.И.Морозов, С.В.Лебедев // Плазмооптика. Вопросы теории плазмы, вып.8, с.247, М.: АИ, 1974.
- 18. A.A.Goncharov e.a., // RSI., 1994, Vol. 65, P.1428.
- 19. A.A.Goncharov, // RSI, 1998, Vol. 69(2), P.1150.
- 20. A.Goncharov e.a., // Appl. Phys. Lett., 1999, Vol.75, P. 911.
- 21. A.A.Goncharov e.a., // IEEE Trans. Plasma Sci., 1997, Vol.25, P. 709.
- 22. A.A.Goncharov e.a., // ibid, 1993, Vol. 21, P. 573.
- 23. А.Гончаров и др. //Физ. плазмы, 1994, Т.20, с.499.
- 24. В.Смайт, // Электростатика и электродинамика, Гл. 7, М.: ИЛ, 1954.
- 25. А.И.Морозов, Л.С.Соловьев, // В кн. Вопросы теории плазмы, вып.2, с.3, М.: Атомиздат, 1963.
- 26. I.G.Brown, // RSI., 1994, Vol. 65, P.3061.
- 27. В.Глазер, //Основы электронной оптики, М.: 1957.
- В.И.Бутенко, Б.И.Иванов, // Расчет соленоидов с программируемым магнитным полем для фокусировки заряженных частиц, см. наст. выпуск.
- 29. Дж.Лоусон // Физика пучков заряженных частиц, Гл. 2, М.: Мир, 1980.