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The interaction of electronic beam with plasma-filled coaxial waveguide with corrugated external radius is
investigated. The dispersion equation, which describes interaction of beam with such slowing down structure, is
obtained. The properties of eigen waves of structure depending on plasma density are investigated numerically. It is
shown that for non-relativistic electronic beams maximal growth rate of instability for plasma-filled slowing down
structure considerably exceeds the one for vacuum structure. The non-linear estimations of waves excitation
efficiency in such system are carried out.

1. Introduction
The vacuum slowing down structures (SDS), which

are used in Cherenkov microwave generators and
amplifiers, accelerators of charged particles, have an
essential shortcoming due to surface character of the
slow wave. The decreasing of longitudinal field
component from periphery to system axis causes the fall
of coefficient of coupling of near-axis beam with a slow
wave, and this results in reduction of instability growth
rates in generators or acceleration rate in accelerators.
This shortcoming is especially strong in the high
frequency range. In the other class of SDS - in
homogeneous plasma waveguides [1] - the slowed down
waves are volumetric and have the maximal longitudinal
electrical field at the axis, where charged particles use to
move. However in non-relativistic region of phase
velocities the plasma waves are quasi-longitudinal, with
small transversal components of fields, that complicates
microwave energy input and output. Hybrid systems,
which are perspective in non-relativistic region of
speeds, were offered for the first time in KIPT. They
combine in themselves the advantages of vacuum and
plasma systems and have no shortcomings marked
above. The hybrid structure uses plasma waveguide as
the beam transition channel of vacuum SDS [2,3]. In
such structure beam-plasma interaction plays the
determining role in excitation of oscillations, and
periodic waveguide system is used for output of power.
The important advantage of coaxial systems is the
presence of a cable mode with a wide frequency band,
including low-frequency range. It is essential for
microwave devices, which work in a continuous
stochastic spectra generation mode, or in multi-
frequency mode.

2. The dispersion equation
The axially symmetric waveguide, formed by two

coaxial ideally conducting cylinders is considered
(Fig.1). The internal cylinder is smooth, external one is
corrugated sinusoidally with a period D. In the
cylindrical system of coordinates )z,,r( ϕ  waveguide
surfaces are given as:

Fig.1 Geometry of system.
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.10,20 <<δ<π≤ϕ≤ It is supposed, that waveguide
is filled with homogeneous plasma and is placed in a
strong magnetic field pc ω>>ω , where cω  is the

cyclotron frequency and pω  is the electron plasma
frequency. Waves of E-type )H,E,E( rz ϕ  are
considered. We solve the Maxwell equations system
together with boundary conditions for tangential
component of electrical field on a surface of waveguide
and we find the dispersion of electromagnetic waves

)k( 3ω  proceeding from a condition of existence of the
non-trivial solution of this system, as it was made in [4].

2.1. The dispersion equation of plasma-filled coaxial
waveguide.

As the corrugated waveguide is periodical along Z-
axis, components of electromagnetic field, according to
the Floquet theorem, can be presented as a series of

spatial harmonics: ( ) ∑
∞

−∞=
⊥⊥ =

n

zik
nn

n||e)r(fAz,rF
!! , where

nkkk 03n|| += , 3k  is the longitudinal wave number.

For axially symmetric E-wave fields in the region
between internal and external cylinders are:
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plasma frequency, pn  is the plasma density, e−  and

em  are the charge and mass of electron accordingly,
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 1010 N,N,J,J  are cylindrical Bessel and Nejmann

functions.

Fig.2 To the boundary conditions at the corrugated
surface of waveguide.

The boundary condition on corrugated surface of
waveguide can be written in components of electrical
field zE  and rE  (Fig.2) in the following form:

( ) ( ) ( ) 0)z(tg)z(RE)z(RE grgz =θ⋅+ ,          (2)

where )zksin(RkdzdRtg 0g00g δ−==θ . Substituting
fields (1) into (2) after appropriate transformations we
received the following infinite system of algebraic
equations for nA :
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where ( ))zkcos(1Rk)z(f 0g0nn ⋅δ+≡ ⊥ . The system (3)
can have the non-trivial solution, only if its determinant
is equal to zero. This defines the required dispersion
equation:

.0Cdet mn =                              (5)

2.2. The dispersion equation for structure with a
beam.

Let the axially symmetric tubular infinitely thin
monoenergetic electronic beam propagates along the
system axis. Beam density [ ] ( )bbbb RrRev2I)r(n −δπ= ,
where bv , I, bR  are velocity of particles, current and
radius of beam accordingly. We consider fields in two
regions (Fig.1): 1 - between an internal cylinder surface
and beam, 2 - between beam and external corrugated
cylinder surface. The boundary conditions on beam for
fields zE  and rE  are:
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where [ ] ( ) ( ) bbb ,0Rf0Rff γ−−+≡  is the relativistic
factor of beam. In the region 1 field can be presented in
the form (1). In the region 2 we have:
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We matched fields from regions 1 and 2 on boundary
bRr =  taking into account boundary conditions (6) and

satisfying boundary conditions (2) on corrugated
waveguide surface. Similarly to the case with no beam
we received the dispersion equation in form (5) with
only difference, that instead of [ ])z(fF n0  in (4) was:
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where ( ) ( ) ( )−≡ ⊥⊥⊥ 2ni1n021ni RkJRkNR,R,kG
( ) ( )2ni1n0 RkNRkJ ⊥⊥ .
It is easy to notice that when 0I→  function

)n,,k,z(T 30 ω  turns into function [ ])(0 zfF n . The choice
of a thin beam allowed us to "extract" beam component
from arguments of cylindrical functions, where it would
enter in case of beam with final thickness [4]. This
eliminates set of beam harmonics appearing in case of
beam with final thickness when bn|| vk→ω , and

simplifies the analysis of results.

3. Results of the numerical analysis of the
dispersion equation

3.1. Dispersion of plasma-filled waveguide.
For the numerical solution of equation (5) the

following parameters of system were chosen: cm10D = ,
cm2R s0 = , cm4R g0 = , 1,0=δ . The dispersion picture

for vacuum waveguide )0n( p =  is presented on Fig.3.
In case of the smooth external cylinder (δ = 0) in such
waveguide there are two types of waves: cable waves
with dispersion ck3=ω  and fast electromagnetic waves

( ) constR,Rkc g0s0n
2
3

22 =µ=−ω .
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Fig.3 Dispersion curves for vacuum structure. Curves
1,2, 3 - cable modes, curves 4,5,6 - fast EM - modes,

which appeared due to Floquet-harmonics interaction.
Opacity bands 1ω∆  and 2ω∆  are represented

schematically.

Fig.4 Dispersion picture for the structure, filled with
plasma 39

p сm108n −⋅= . Curve I - Floquet-harmonic of
cable mode n=0, curve II - Floquet-harmonic of cable

mode n=–1, curves 1-4 - radial plasma brunches,
corresponding to various Floquet-harmonics.

Corrugation results in appearance of Floquet-
harmonics and splitting of dispersion curves near the
points of crossing of different Floquet-harmonics.
Specifically, due to the interaction of harmonics 0 and -
1, instead of wave ck3=ω  we receive (for

1Dk0 3 <π< ) a wave with phase velocity, which is less
than speed of light (curve 1). With growth of δ width of
first opacity band 1ω∆  ( Dcπ≈ω ) increases linearly,
and width of second opacity band 2ω∆  ( Dc2π≈ω ) -
by square-law.

On Fig.4 the dispersion picture is presented for
waveguide, filled with plasma with density

39
p cm108n −⋅= , that corresponds to dimensionless

plasma frequency 535,0cDp =πω . For pω>ω  the
dispersion does not differ qualitatively from a vacuum
case. In this area the presence of plasma results only in
some increasing of own waves frequencies (Fig.4.a). In
area pω<ω , where there are many radial plasma
harmonics appropriate to Floquet-harmonics with n = -1,
0, 1 splitting picture is much more complex (Fig.4.b).

For 311
p cm103,1n −⋅=  the whole range of

frequencies of cable wave up to the first opacity band is
located in area pω<ω . For the cable wave change of
frequency is small, but the dispersion brunch becomes
strongly split because of interaction with infinite number
of radial Floquet-harmonics of plasma waves, forming
the so-called dense spectrum [5]. It is the case, when the
own wave of vacuum structure is covered by plasma
waves, which is necessary to use in hybrid SDS [6].

Fig.5 Dispersion picture for vacuum structure with
beam (a), instability region is represented

schematically. Dependencies of frequency (b) and
growth rate (c) of backward cable mode instability from

longitudinal wavenumber. 50cv151 bb ,,, ==γ .



20

3.2. Interaction of beam with eigen waves of vacuum
SDS.

The frequencies and growth rates of unstable
oscillations which arise in beam-SDS system were
received with cm3R b = , A200I = . On Fig.5 the
general dispersion picture and the dependencies of
growth rate and frequency of unstable oscillations from

3k  are presented for 15,1b =γ . With growth of bγ
distance between fast and slow brunches of beam
decreases and the beam velocity increases, that results in
interaction with a direct cable mode.

Fig.6 Dispersion picture (a) for structure, filled with
plasma 311

p cm1031n −⋅= , ,instability region is
represented schematically. Dependencies of frequency

(b) and growth rate (c) of backward cable mode
instability from longitudinal wavenumber.

90cv292 bb ,,, ==γ .

3.3. Interaction of beam with eigen waves of plasma-
filled SDS.

As it was mentioned above, the presence of plasma
in system results in appearing of set of additional
branches of oscillations. The slow branches of beam
Floquet-harmonics being crossed with them give the
area of instability near the crossing point. Typical
dispersion picture and the dependencies of growth rate
and frequency of unstable oscillations from 3k  for

plasma case ( )29,2,cm103,1n b
311

p =γ⋅= −  are
presented on Fig.6. The instability near the point of
crossing of slow brunch of zero beam harmonic with a
cable mode has maximal growth rate, as well as in
vacuum case.

On Fig.7 and Fig.8 the dependencies of growth rates
and frequencies of unstable oscillations from bγ  for

vacuum and also for plasma density 310
1p cm108,2n −⋅=

Fig.7 Dependencies of cable mode instability growth
rates from relativistic beam factor bγ . Curve (1) -

vacuum, (2) - 310
1p cm1082n −⋅= , , (3) -

311
2p cm1031n −⋅= , .

Fig.8 Dependencies of cable mode instability frequency
from relativistic beam factor bγ . Curve (1) - vacuum,

(2) - 310
1p cm1082n −⋅= , , (3) - 311

2p cm1031n −⋅= , .

and 311
2p cm103,1n −⋅=  are presented. For 2b >γ

growth rates fall down with the increasing of bγ  in all
three cases practically equally. However at large bγ  the
frequency of instability grows with the increasing of
plasma density rather considerably. With decreasing of

bγ  for plasma 1pn  growth rate almost coincides with

vacuum one up to 5,1b ≈γ . But for smaller bγ  growth
rate exceeds the vacuum one significantly. For more
dense plasma 2pn  growth rate begins to exceed vacuum

growth rate already with 2b ≈γ . For smaller bγ  it
exceeds the growth rate, appropriate to smaller plasma
density 1pn . For 3b <γ  the frequencies of unstable

oscillations in all three cases with identical bγ  are very
close one to one.

4. Efficiency of excitation of electromagnetic
waves

The linear stage of interaction of electronic beam
with a synchronous wave of corrugated coaxial line
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continues until non-linear processes of multi-mode
interactions appear - decay, modulation instability etc.
They redistribute microwave power of a raised
synchronous wave across a spectrum and that stabilises
level of raised microwave oscillations. The essential
mechanism of stabilisation of instability of microwave
oscillations build-up, which is coming before others, is
the capture of beam in a field of the main synchronous
wave (non-linearity "wave - particle") [7]. Growth rate
of this wave was determined in the linear theory. In this
case [7] the saturation takes place when growth rate

)Im(ω  is comparable with frequency of trapped
oscillations of beam particles in the wave field Ω :

Ω≈ω)Im( ,                                   (9)

Where ,)m(keE 3
b3zmax γ=Ω  zmaxE  is the amplitude

of saturation of longitudinal component of electrical
field intensity. From here follows:

[ ] )ek(m)Im(E 3
3
b

2
zmax γω≅ .                    (10)

The received expressions allow to estimate efficiency of
excitation of microwave fields in considered structure.
The efficiency of generation was defined as the ratio of
a microwave power flow to a flow of electronic beam
particles kinetic energy Sb through the waveguide cross
section. To calculate the microwave power flow the own
waves of coaxial corrugated waveguide without beam
were taken as:
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i.e. it was supposed, that the basic contribution to a
longitudinal electrical field gives harmonic with number
0, and the power flow is determined by fields of
harmonics with numbers 0 and -1. As a result the
following expression for efficiency was received:
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where грv  is the group velocity of wave.

Results of investigations of influence of various
parameters of electronic beam - SDS system on
efficiency value are presented below. For calculation of
ω, 3k  and Im(ω) the dispersion equation, taking into
account only harmonics with numbers 0 and -1, was
took. The beam current was equal to 400 A, cm10D = ,

cm2R s0 = , cm4R g0 = , cm3Rb = , 1,0=δ . The

frequency ω, appropriate to wave number 3k  of a
maximum of growth rate of the instability Im(ω) in case
with no beam, was substituted into expression (12). The
calculations were carried out for a case of vacuum
structure and also for the following values of plasma
density: 310

1p cm103683,1n −⋅= ,

310
2p cm102619,2n −⋅= , 310

3p cm108,2n −⋅= ,
311

4p cm103,1n −⋅= .
Table 1

 η (%)  for  plasma  densities:γb Sb
(MW) Np=0 np1 np2 np3 np4

1,25 51,2 1,08 1,17 1,23 1,27 2,84
1,4 82 1,69 1,74 1,79 1,81 2,44
1,67 136,5 2,69 2,71 2,72 2,73 2,98
2,29 265 2,55 2,62 2,60 2,63 2,75

In Table 1 the values of η for various densities of
plasma and for various values of beam energy are
presented. Let's note the following: first, η increases
with the growth of plasma density, and with 251,b =γ

for 311
4p cm103,1n −⋅=  η becomes more than two and a

half times as much as the vacuum efficiency. Second,
with growth of bγ  for vacuum case and for all plasma
cases except 4pn  η grows, reaching the maximal value
with 67,1b =γ  and then decreases with 29,2b =γ .

5.Conclusions
The dispersion equation, describing interaction of

thin tubular electronic beam with plasma-filled coaxial
waveguide which external surface is modulated by
harmonic law, is received. It is shown that growth rates
of instabilities are maximal for the modified backward
cable mode of a corrugated coaxial line, and also that
the plasma filling results in essential increasing of
growth rate of instability in the frequency band pω<ω
and Dcπ<ω  at the backward cable mode, with this the
frequencies of instability vary insignificantly. The non-
linear estimations of oscillations excitation efficiency by
beam on backward cable mode are carried out. It is
shown that the plasma filling results in significant
efficiency growth.
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