OPERATION OF THE 400-750KV PULSE VOLTAGE MULTI-CASCADE DISCRIMINATOR

V.N.Zubetz, V.I.Derbilov, S.K.Esin, V.S.Klenov, E.S.Nikulin, O.T.Frolov, V.P.Yakushev Institute for Nuclear Research, RAS, Moscow

1. INTRODUCTION

The multi-cascade discriminator (MD) of the amplitude of pulsed $400-750 \mathrm{kV}$ voltage is an important part of the pulse high-voltage generator at the highcurrent linac injector of the Moscow meson factory [1]. It was invented and designed at the Efremov Institute of Electrophysical Apparature (Leningrad). It was partially tested at the factory [2] and successfully ran at 1 Hz repetition rate [3] in the adjusting mode of the accelerator. However the transition to 50 Hz repetition rate gave rise to certain drawbacks, such as the current overloading of the inductivities, breakdown of the diodes and insufficient voltage. Analytical and experimental researches were conducted, and the required changes were made on their basis. These changes allowed the discriminator to operate with high reliability. The main results are set forth in this report.

2. ANALYSIS OF THE MULTI-CASCADE DISCRIMINATOR OPERATION

The periodic process is considered when at the end of each period all inductivity currents and the capacitors voltages revert to their values in the beginning of the period. The period is divided into 2 parts; in the first part currents and voltages grow, in the second part they revert to original values.

2.1. DISCRIMINATION OF PULSED VOLTAGE

The principal scheme of the device for limitation of positive voltage impulses is shown in fig. 1a. When the applied voltage exceeds the sum of $\mathbf{C}_{1} \div \mathbf{C}_{\mathbf{n}}$ voltages and drop of voltages on all diodes $\mathbf{V}_{1} \div \mathbf{V}_{\mathrm{n}}$, these diodes conduct the I_{i} pulse current, which slightly increases the charges of capacities during the time of the pulse $\mathbf{t}_{\mathbf{i}}$ by $\boldsymbol{\delta}$ $\mathbf{U}_{\mathbf{i}}=\mathbf{I}_{\mathbf{i}} \mathbf{t}_{\mathbf{i}} / \mathbf{C}_{\mathbf{i}}$. The sum voltage instability is equal to their sum on all capacitors, i.e. $\boldsymbol{\delta} \mathbf{U}=\mathbf{n} \mathbf{I}_{\mathbf{i}} \mathbf{t}_{i} / \mathbf{C}$, if capacities are identical. During the impulse the voltage which approximately repeats the general impulse form is applied to each inductivity; its magnitude is proportional to this cascade capacity voltage. As a result, j -inductivity current will be augmented by

$$
\mathbf{I}_{\mathrm{j}}=\mathbf{U}_{\mathbf{0}} \mathbf{k}_{\mathrm{u} \mathbf{j}} \mathbf{t}_{\mathbf{i}} \mathbf{k}_{\mathrm{i}} / \mathbf{L}_{\mathrm{j}}
$$

where \mathbf{U}_{0} is reference voltage of the discriminator, \mathbf{k}_{uj} is coefficient which demonstrates how many times the j capacity voltage is less than $\mathbf{U}_{\mathbf{0}} ; \mathbf{k}_{\mathbf{i}}=\mathbf{1}+\left(\mathbf{t}_{\mathrm{b}}+\mathbf{t}_{\mathrm{e}}\right) / \mathbf{t}_{\mathbf{i}} / \mathbf{2}$ allows for a role of fore and back fronts in the inductivity current increasing, $\mathbf{L}_{\mathbf{j}}$ is inductivity of the corresponding cascade (see Fig. 2a).

Fig. 1.

2.2 DISCHARGE OF CAPACITIES BETWEEN IMPULSES

Between impulses all capacitors return charges in a reference supply source when average current $\mathbf{I}_{\mathbf{n}}=\mathbf{n} \mathbf{I}_{\mathbf{i}} \mathbf{t}_{\mathbf{i}} \mathbf{f}$ running, where f is pulse repetition rate (see Fig. 1b). The numeration of cascades starts from the output. Let us consider the first cascade. The inductivity current should be diminished by magnitude $\mathbf{I}_{1}=\mathbf{U}_{0} \mathbf{k}_{\mathbf{u} 1} \mathbf{t}_{\mathbf{i}} \mathbf{k}_{\mathbf{i}} / \mathbf{L}_{1}$; the negative voltage $\mathbf{U}_{2}-\mathbf{U}_{1}+\mathbf{U}_{\mathbf{r 1}}+\mathbf{R}_{1} \mathbf{i}_{11}$ (where \mathbf{U}_{2} and \mathbf{U}_{1-} voltage on capacities \mathbf{C}_{2} and \mathbf{C}_{1} accordingly, $\mathbf{U}_{\mathbf{r} 1}$ voltage drop on the diode $\mathbf{V}_{\mathbf{r} 1}, \mathbf{R}$ - ohmic resistance of the inductivity wiring, \mathbf{i}_{11} - momental value of a current in \mathbf{L}_{1}) is applied to the inductivity. For MD parameters it is possible to assume with satisfactory accuracy that \mathbf{R} is a small value, the current is changing linearly during \mathbf{t}_{1} when the charge $\mathbf{Q}=\mathbf{I}_{\mathbf{i}} \mathbf{t}_{\mathbf{i}}$ passes through the inductivity.

Hence $\boldsymbol{\delta} \mathbf{U}_{\mathbf{1}}=\mathbf{U}_{\mathbf{2}}-\mathbf{U}_{\mathbf{1}}=\mathbf{I}_{\mathbf{1}} \mathbf{L}_{\mathbf{1}} / \mathbf{t}_{\mathbf{1}}-\mathbf{U}_{\mathrm{r} 1}$ and $\mathbf{Q}=\mathbf{I}_{\mathbf{1}} \mathbf{t}_{\mathbf{1}} / \mathbf{2}$.
Having made necessary transformings, we get
$\mathbf{t}_{1}=\mathbf{2} \mathbf{L}_{1} \mathbf{I}_{\mathrm{i}} /\left(\mathbf{U}_{0} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{u} 1}\right), \boldsymbol{\delta} \mathrm{U}_{\mathbf{1}}=\left(\mathbf{U}_{0} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathbf{u} 1}\right)^{\mathbf{2}} \mathbf{t}_{\mathrm{i}} /\left(\mathbf{2} \mathbf{I}_{\mathrm{i}} \mathbf{L}_{\mathbf{1}}\right)-\mathbf{U}_{\mathrm{r} 1}$
For the second cascade it is necessary to take into account, that there pass charge $\mathbf{2 Q}$, hence
$\mathbf{t}_{2}=\mathbf{4} \mathrm{L}_{2} \mathbf{I}_{\mathrm{i}} /\left(\mathrm{U}_{0} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{u} 2}\right), \delta \mathrm{U}_{2}=\left(\mathrm{U}_{0} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathrm{u} 2}\right)^{2} \mathbf{t}_{\mathbf{i}} /\left(\mathbf{4} \mathbf{I}_{\mathrm{i}} \mathrm{L}_{2}\right)-\mathrm{U}_{\mathrm{r} 2}$ and for \mathbf{j}-cascade, accordingly, charge $\mathbf{j} \mathbf{Q}$ and $\mathbf{t}_{\mathrm{j}}=\mathbf{j} 2 \mathbf{L}_{\mathrm{j}} \mathbf{I}_{\mathrm{i}} /\left(\mathbf{U}_{0} \mathbf{k}_{\mathrm{i}} \mathbf{k}_{\mathrm{uj}}\right), \delta \mathbf{U}_{\mathrm{j}}=\left(\mathbf{U}_{0} \mathbf{k}_{\mathrm{i}} \mathbf{k}_{\mathrm{uj}}\right)^{2} \mathbf{t}_{\mathrm{i}} /\left(\mathbf{j} 2 \mathbf{I}_{\mathrm{i}} \mathbf{L}_{\mathrm{i}}\right)-\mathbf{U}_{\mathrm{rj}}-\mathbf{R} \mathbf{I}_{\mathrm{j}} / \mathbf{2}$, if $\mathbf{t}_{\mathbf{j}}<\mathbf{1} / \mathbf{f}$. The diagrams of currents are shown in Fig. 2b and 2 c .

It is necessary to take into account that $\mathbf{\delta} \mathbf{U}_{\mathbf{j}}$ will
be in all previous cascades, i.e., with coefficient j in a total MD voltage loss.

If $\mathbf{t}_{\mathbf{j}}>\mathbf{1} / \mathbf{f}$, then $\boldsymbol{\delta} \mathbf{U}_{\mathbf{j}}+\mathbf{U}_{\mathrm{rj}}+\mathbf{R} \mathbf{I}_{\mathrm{mj}}$ gets such value, that during $\mathbf{1} / \mathbf{f}-\mathbf{t}_{\mathrm{i}}$ the j -inductivity current has changed by $\mathbf{I}_{\mathbf{j}}$; here the average current $\mathbf{I}_{\mathbf{a j}}=\mathbf{j Q f}$. Then, neglecting $\mathbf{t}_{\mathbf{i}}$ in comparison with $\mathbf{1 / f}$, we receive

Fig. 2.
Now it is possible to write the expression for a total loss of MD voltage, if k - the number of the cascade, after which $\mathbf{t}_{\mathbf{j}}>\mathbf{1} / \mathbf{f}$,

The \mathbf{j}-capacity voltage (let $\mathbf{j}<\mathbf{k}$) is determined as

Let us consider the important case, when the parameters $\mathbf{L}, \mathbf{R}, \mathbf{U}_{\mathbf{r}}$ for all cascades are identical. Then, accepting the symbols: $\Delta \mathbf{U}_{\mathbf{r}}=\Delta \mathbf{U} /\left(\mathbf{n U}_{\mathbf{0}}\right), \Delta$
$\mathbf{U}_{\mathbf{L}}=\mathbf{U}_{0} \mathbf{t}_{\mathbf{i}} \mathbf{k}_{\mathrm{i}}^{2} /\left(\mathbf{2} \mathbf{I}_{\mathbf{i}} \mathbf{L}\right), \mathbf{t}_{\mathbf{0}}=\mathbf{2} \mathbf{L} \mathbf{I}_{\mathbf{i}} /\left(\mathbf{U}_{0} \mathbf{k}_{\mathbf{i}}\right)$, and accordingly $\mathbf{t}_{\mathrm{j}}=\mathrm{t}_{0}\left(\mathbf{j} / \mathbf{k}_{\mathrm{uj}}, \mathrm{I}_{0}=\mathrm{U}_{\mathbf{0}} \mathrm{t}_{\mathrm{i}} \mathbf{k}_{\mathrm{i}} / \mathrm{L}, \mathbf{I}_{\mathrm{j}}=\mathrm{I}_{0} \mathbf{k}_{\mathrm{uj}}, \delta \mathrm{U}_{\mathrm{j}}=\mathrm{U}_{0} \Delta \mathrm{U}_{\mathrm{L}} \mathbf{k}_{\mathrm{uj}}{ }^{2} / \mathbf{j}-\mathrm{U}_{\mathrm{r}}\right.$ or δ $\mathbf{U}_{\mathrm{j}}=\mathbf{U}_{\mathbf{0}} \mathbf{k}_{\mathbf{f}} \mathbf{k}_{\mathbf{u j}}-\mathbf{U}_{\mathbf{r}}-\mathbf{R} \mathbf{I}_{\mathbf{a j}}$, where $\mathbf{k}_{\mathbf{f}}=\mathbf{t}_{\mathbf{i}} \mathbf{k}_{\mathbf{i}} \mathbf{f}$, we receive the loss of voltage in relative units

and the j -capacity voltage, $\mathbf{j}<\mathbf{k}$ (relative units)

The simplest cases are of certain interest:
1). A repetition rate is small, for all cascades $\mathbf{t}_{\mathbf{j}}<\mathbf{1} / \mathbf{f}$,
$\mathbf{I}_{\mathbf{a j}}=\mathbf{I} \mathbf{j} / \mathbf{2}$, and let $\mathbf{k}_{\mathrm{uj}} \sim \mathbf{1 . 0}$, then
$\Delta \mathrm{U}_{\mathrm{r}}=\Delta \mathrm{U}_{\mathrm{L}}-\left(\mathrm{U}_{\mathrm{r}} / \mathrm{U}_{0}\right)(\mathrm{n}+\mathbf{1})-\mathrm{RI}_{\mathbf{0}}(\mathrm{n}+1) /\left(\mathbf{4} \mathrm{U}_{\mathbf{0}}\right)$

$$
k_{\mathrm{uj}}=1-\Delta \mathrm{U}_{\mathrm{L}=\mathrm{j}} \sum_{\mathrm{m}}(1 / \mathrm{m})+\left(\mathrm{U}_{\mathrm{r}} / \mathrm{U}_{0}\right)(\mathrm{n}+1-\mathrm{j})+\left(\mathrm{RI}_{0} / 2 \mathrm{U}_{0}\right)(\mathrm{n}+1-\mathrm{j})
$$

For ideal MD, when $\mathbf{U}_{\mathbf{r}}$ and \mathbf{R} are neglectedly small, the loss of voltage is determined by the first member. It does not depend on cascade number and is inversely proportional to $\mathbf{I}_{\mathbf{i}}$ and \mathbf{L}; the condition of acceptable loss determines the value of inductivity. The diode voltage drop and ohmic resistance, on the contrary, equalize the voltages on capacities and moderate the total loss of voltage. With the growth of cascade number this tendency has a stronger effect.
2). The repetition rate is large, $\mathbf{t}_{1}>\mathbf{1} / \mathbf{f}$, let $\mathbf{k}_{\mathrm{uj}} \sim \mathbf{k}_{\mathrm{uf}}$ and $\mathbf{I}_{\mathrm{aj}}=\mathrm{j}$ Qf, then

$k_{u j}=1-k_{f} k_{u f}(n+1-j)+\left(U_{r} / U_{0}\right)(n+1-j)+\left(R / U_{0}\right) Q f(n+1-j)$
Here for ideal MD the loss of voltage grows linearly with the number of cascades and does not depend on the value of inductivity. The influence of diodes has the same nature, the influence of resistance has a stronger effect as the cascade number grows.

In order to take into account precisely all the parameters of the multi-cascade discriminator, the PC computation code for currents and voltages in all correlated cascades was developed. The fastest convergence of results is received for the initial state, when the capacitor voltages equal zero, and with each impulse they receive a charge $\mathbf{I}_{\mathbf{i}} \mathbf{t}_{\mathrm{i}}$. The formed voltages were observed after approximately 70 impulses, i.e. a few seconds later. The MD experimental values agree well with the computer calculations.

3. THE PROTON INJECTOR DISCRIMINATOR

For the discriminator considered the parameters have the following values: $\mathbf{U}_{\mathbf{0}}=25 \mathrm{kV}, \mathbf{n}=32, \mathbf{L}=10 \mathrm{H}$, $\mathbf{U}_{\mathbf{r}}=60 \mathrm{~V}, \mathbf{R}=50 \mathrm{Ohm}, \mathbf{I}_{\mathrm{i}}=2,5 \mathrm{~A}, \mathbf{k}_{\mathrm{i}}=1,5, \mathbf{t}_{\mathbf{i}}=85 \mathrm{mcsec}$. Then the main magnitudes for 50 Hz repetition rate are equal: $\Delta \mathbf{U}_{\mathbf{L}}=9,56 \%, \mathbf{t}_{0}=0,00133 \mathrm{~s} ; \mathbf{I}_{0}=0,319 \mathrm{~A} ; \mathbf{k}_{\mathrm{f}}=0,64 \%$.

$\mathrm{f}(\mathrm{Hz})$		10	25	50	100
$\mathbf{U}_{\mathbf{2}}$	Precisely	20,9	20,9	20,3	18,2
(kV)	approx.	21,5		20,6	18,3
$\mathbf{U}_{\mathbf{1}}$	Precisely	19,3	19,3	18,8	17,0
(kV)	approx.	20,2	20,1	19,4	17,5
\mathbf{U}	Precisely	768	768	749	691
(kV)	approx.	768	765	742	695

In Table 1 the results of calculations made in accordance with the mentioned formulas and by the computer are compared. It can be seen that assumptions made when deducing the formulas are justified.

In Table 2 the dependence of output voltage (relative units derived from $\mathbf{n} \mathbf{U}_{\mathbf{0}}$) on \mathbf{L} value and voltages on the first two capacities for two modes is shown when $\mathbf{f}=10$ and $\mathbf{f}=100 \mathrm{~Hz}$; the other parameters are invariable.

Table 2

$\mathrm{L}(\mathrm{H})$		2	5	10	20	50	100
$\mathrm{U}_{\mathbf{r}}$	10 Hz	.746	.884	.951	.992		
(rel. units)	100 Hz	.746	.839	.855	.860	.862	.862
$\mathrm{U}_{\mathbf{2}}(\mathrm{kV})$	10 Hz	10.4	16.6	21.5	23.3		
	100 Hz	10.4	15.8	18.3	18.6	18.7	18.8
$\mathrm{U}_{\mathbf{1}}(\mathrm{kV})$	10 Hz	8.4	14.5	20.2	22.3		
	100 Hz	8.4	13.9	17.5	18.0	18.5	18.6

4. INDUCTIVITY

For multi-cascade discriminators, when current in last inductivity does not drop to 0 , currents in first and last inductivities differ \mathbf{n} times, where \mathbf{n} is cascade number. Therefore inductivity wiring requirements are completely different. The last inductivity current is the greatest one, it is equal

$\mathbf{I}_{\mathrm{an}}=\mathbf{n} \mathbf{I}_{\mathrm{i}} \mathbf{t}_{\mathbf{f}}$.

Active current in first inductivity is much less because current continues only during t_{1} time, and so there is no need to have such large wire cross-section as for the last inductivity. All inductivity wirings were changed for the new ones in proton injector discriminator.

If, as it is for injector, inductivities have magnetic cores it is possible to rise their values for the first cascades by decreasing air gaps of cores. This action will reduce voltage loss of first condensators. However, it is necessary to mean, that non-identical inductivities will destroy linear voltage distribution through cascades, and especially will shorten separate
cascades pulse front duration, that is very important for diodes.

5. DIODES

Experimental and analytical study has shown that charging diodes $\mathbf{V}_{1} \div \mathbf{V}_{\mathbf{n}}$, see Fig. 1 a, work in much harder conditions than discharging ones, as just after passing of $\mathbf{I}_{\mathbf{i}}$ pulse current they should go to a closed state during back front of high voltage pulse. Diodes КД203Д used in the beginning were not reliable for $\mathbf{f}>10 \mathrm{~Hz}$ and were changed for КД206Д diodes with shorter reverse time, the latter diodes do not demand voltage distributor.

Assemblies of 59 this type diodes (for 25 kV voltage) can work up to $\mathbf{f}=100 \mathrm{~Hz}$.
6. CONCLUSION

The exact calculation of MD voltage loss has urged us to increase the number of cascades up to 32 .

In addition the assemblies of КВИ-3 capacitors with equivalent capacitance $\sim 1000 \mathrm{pF}$ were mounted in bridge to all diodes (both direct and inverse). They serve to eliminate the cascades overvoltage when breakdowns in accelerating tube or high-voltage transformer occur.

For trouble-free operation at $\mathbf{f}=100 \mathrm{~Hz}$ the inductivities should be different. It is necessary to connect each of the last 8 inductivities in bridge to the same inductivity (thereby it may be possible to eliminate their overcurrent); and for the first 8 inductivities it is necessary to increase their value 5-10 times (at the expense of the gap decreasing in a magnetic conductor), and thus to diminish voltage losses on the first capacities.

REFERENCES

1. A.S.Belov et al. // Proceedings of The XII International Conference on Electrostatic Accelerators. Obninsk, 1999, page 199-206. (in Russian).
2. Yu.V.Belov et al. // Proceedings of The VIII AllUnion Conference on Charged Particle Accelerators, Dubna, 1983, т. II, page 159. (in Russian).
3. O.V.Elsukov et al. // Voprosy atomnoj nauki i tehniki. Seria: Yaderno-fizicheskie issledovanija (Teoria i eksperiment), 1989, vyp. (6), page 19. (in Russian).
