
CALCULATION OF THE DISPERSION PERFORMANCES OF SLOW 
WAVE STRUCTURES WITH ARTIFICIAL ANISOTROPICAL 

DIELECTRICS
V.G.Papkovich, N.A.Khizhnyak

NSC KIPT, Kharkov
The cylindrical waveguide periodically loaded 

with dielectric disks [1] represents the waveguide of 
slow waves which can find application in the technique 
of amplification and generation of electromagnetic 
waves, as well as in accelerating technique. The 
waveguides with a dielectric load are effective in a wide 
range of phase velocities vph (β = vph/c ~ 0,1-1,0) and 
have extra properties favourably distinguishing them 
from structures with an all metal load. And though they 
have the some limitations caused by the known 
behaviour of dielectrics in high-frequency fields of the 
high strength, the structures with such advantages can 
attract attention of the developers of new high-
frequency technique.

In development of such an electrophysical 
equipment one of basic problems is to satisfy the 
requirements of synchronism between the velocity of 
charged particle beam and the phase velocity of 
electromagnetic wave propagating in the structure. The 
aim of the present paper is to study the dispersion 
characteristics of the waveguide loaded with dielectric 
disks with central holes for passing the particle beam.

Let us consider the metal waveguide of circular 
section of radius R, periodically loaded with dielectric 
disks of a thickness b, distance between disks is equal to 
a, L = a+b, period of disk arrangement. The permittivity 
of disk material is identical and equal to ε, between 
disks ε = 1. The radius of the pass channel is designated 
as r0. The losses of electromagnetic energy in a metal 
wall of the waveguide and in a dielectric volume in 
sectional operation are not taken into account. In the 
waveguide the symmetric wave of E-type propagates 
(below the time factor exp( )i tω  is omitted). The 
solution of this problem will be carried out in a general 
form where the structure period is comparable with the 
wavelength in the waveguide (L ~ λg).

In a case, when the load consists of solid 
dielectric disks (r0 = 0), the dispersion properties of the 
waveguide are featured by the well- known equation [2]
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constants in separate layers of the waveguide load, 
k c= ω /  - wave number, k R1 0= σ /  - transversal 
wave number, σ0 - first root of  cylindrical functions of 
the first order, ψ ω β= =L v kLph/ /  - shift of the 
phase in the structure period. From this equation for 
given values of geometrical and electrotechnical 
parameters it is possible to determine a phase velocity 
of a wave in the waveguide.

The situation varies radically, when in the 
waveguide it is necessary to have the channel for 
passing particles interacting with a field of a slow wave. 
The presence of holes in disks leads to decrease of a 
total dielectric load of the waveguide and to 
redistribution of a field existing in the waveguide at 
r0 = 0. To solve the dispersion equation at r0 ≠ 0 we shall 
take advantage of a procedure formulated in [3]. The 
dispersion equation obtained has, as in the case of the 
waveguide loaded with metal diaphragms, a form of an 
infinite determinant but the form of the field expansion 
in separate regions and character of convergence of the 
solution obtained are completely various.

The field in the pass channel is represented as an 
infinite decomposition on space harmonics
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where χ βn nk2 2 2= − , and the values of βn are 
interrelated to a stationary value of distribution of the 
first harmonic β ω0 0= / v  by a Floquet’s relation 
β β πn n L= +0 2 / . A field in the annular region is 
represented as the expansion in terms of space 
harmonics of the cylindrical waveguide periodically 
loaded with solid dielectric disks
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Wm(z) - periodic function with a period L, describing 
the dependence of a field in the waveguide on the 
longitudinal coordinate. For the wave, propagating in 
positive direction of then axis z, the function Wm(z) with 
unit starting conditions can be written as

W z u z
u L e
u L

u zm

i

( ) ( )
( )

( )
( )= −

− −

1
1

2
2

ψ

.            (5)

where the functions u1(z) and u2(z) represent the 
fundamental solutions of the equation
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The radial part in the expansion (3) is determined with a 
combination of cylindrical functions of the zero and first 
orders

Z0(Γmr) = N0(ΓmR)J0(Γmr) - J0(ΓmR)N0(Γmr),
Z1(Γmr) = N0(ΓmR)J1(Γmr) - J0(ΓmR)N1(Γmr).

Equating the corresponding harmonics at r = r0 

we come to the following set of equations concerning 
required coefficients an and cm:
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The condition for solving the obtained homogeneous set 
of algebraic equations is the equality to zero of its 
determinant
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which is the required dispersion equation of the 
waveguide loaded with dielectric disks with central 
holes. Similarly to the case of the waveguide loaded 
with metal diaphragms, it looks like an infinite 
determinant. Note, that the convergence of the 
determinant obtained will be determined by a behavior 
of functions, on which the expansion is carried out [4]. 
In the used approach the decomposition of fields is 
carried out on eigenfunctions of the inhomogeneous 
cylindrical waveguide, therefore convergence of the 
dispersion equation will be the better, the smaller radius 
of a central hole in disks is.

To demonstrate peculiarities of calculations for 
dispersion properties of such waveguides we consider, 
as an example, the calculation of the dielectric disk 
thickness as a function of the radius value of a central 
hole in the waveguide with the given value of the phase 
velocity (β = const). The waveguide is specified by the 
following parameters: ε = 90, R = 4,2 cm, working 
wavelength λ = 10 cm. In the waveguide the travelling 
wave propagates with a phase velocity β = 0,4 and 
phase shift ψ = π/2 in a structure period.
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In Fig. 1 the change of a fill factor of a structure 
period with the dielectric b/L is shown depending on the 
radius of a central hole r0/R. The curve 1 corresponds to 
the change b/L at loading the waveguide with solid 
dielectric disks, 2 - calculation for the zero term of the 
equation (8) and 3 - calculation for the complete 
dispersion equation (8). From this consideration it 
follows, that at r0/R < 0,1 dispersion properties of 
structure do not differ from properties of waveguide 
loaded by solid disks, but at r0/R > 0,15 it is necessary 
to take into account the changed structure of the field, 
i.e. to take into account the presence of the spectrum of 
space harmonics.
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In Fig. 2 the character of convergence of the 
solution of the dispersion equation (8) is shown 
depending on the order of a computed determinant. In 
this figure the reduced radius of the central hole is taken 
as a parameter. From theconsideration it follows, that 
with calculations being sufficiently accurate for practice 
(~ 1 micron) one may restrict itself to the solution of the 
determinant with m = 5.

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. № 4.
Серия: Ядерно-физические исследования (35), с. 31-33.

31



2 . 8 2 . 9 3 3 . 1 3 . 2 3 . 3 3 . 4 3 . 5
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

f ,  G  H  z

v 
/ c

1 a
2 a

1 b 2 b

Fig. 3.

Fig. 3 represents the results of numerical 
calculations of dispersion curve for the waveguide 
(solid) in comparison with these experimentally 
obtained (points) taken from the paper [5] For this case 
r0/R = 1/3,6: ε = 80. The curve 1b corresponds to the 
waveguide loaded with dielectric disks of a thickness b 
= 3 mm with a period of arrangement L = 1,2 cm; a 
curve 2b - b = 4 mm and L = 2,2 cm. The dotted lines 1a 
and 2a show dispersion characteristics for the 

corresponding waveguides loaded by solid dielectric 
disks. From the above dependence it follows that the 
data obtained correspond each other within the limits of 
an experimental error. That proves the chosen approach 
to the solution of a problem in distribution of 
electromagnetic waves in the circular metal waveguide 
loaded with dielectric disks having central holes.
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