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In most theoretical and experimental research, 
devoted to studying the interactions of beams with 
hybrid structures, the beam density is assumed small, 
therefore it does not change a structure of eigenwaves of 
electrodynamic system the beam interacts with. It is 
interesting to consider another limiting case, when the 
beam density is already so large, that natural oscillations 
of beam partiсles (ω b ) are more than frequency of 
electromagnetic waves exited by beam, and when the 
presence of beam significantly changes the slowing 
structure electrodynamics.

STATEMENT OF A PROBLEM
In the present report we shall investigate 

theoretically and numerically the dispersion characteris-
tics and find increments of instability of nonequilibrium 
systems with beams of large density that consist of 
annular electron beam moving along axes of helical 
slowing structure, which is immersed in strong external 
magnetic field directed parallel to the system axis. 

Let us consider a helical waveguide with radius 
Rh , with helix period λ h  and pitch angle of helixψ  
immersed in the strong external magnetic field H Z0 || . 
Along axis (axisZ ) the annular electron beam with 
current Ibo  is moved being localized near the mean 
radius R Rb h<  in the rather narrow region with 
thickness ∆ < < Rh , so the electrons density is constant 
in transverse direction and can be described by the 
function:
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where θ ( )x  is the unit Heaviside function, Vo is the 
equilibrium beam velocity along the system axis, Ibo  is 
the beam current, 2π R Sb b∆ =  is its cross section. 
The electromagnetic fields in the system is described 
usually by Maxwell’s equations. Let assume, that the 
perturbed quantities varies as f r i k z t( ) exp ( )|| − ω .

THE BOUNDARY CONDITIONS
When solving the electrodynamics problem 

about long waves propagation ( λ λ> > h ) we consider a 
helix as infinitesimal thickness and perfectly conducting 
anisotropy cylinder with standard boundary conditions 
for fields (see, for example, [1-3]):
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The index (2) and (1) are for fields inside and outside of 
helix, accordingly, h  and τ  are direction along and 
perpendicular wires in a plane tangent to helix. The 
boundary conditions at thin-wall annular beam consist 
of the condition for continuity of tangential components 

of fields and presence of jump in the azimuthal 
magnetic field due to the beam current:
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where: ω πb boe n m2 24= /  is the plasma frequency 

of beam, n Vbo o,  is the equilibrium density and beam 
velocity, respectively, mo  is the mass of  electron, c  is 
the velocity of  light. Since we assume, that the beam is 
rather thin, and in the system the oscillations with a 
wavelength λ > > ∆  are propagated, it is possible do 
not take into account a beam stratification in transverse 
direction. The value of the field acting on electrons can 
be taken in a point equal to the mean beam radius.

THE DISPERSION EQUATION
Producing matching of the fields according to 

boundary conditions (1-3) we obtain the dispersion 
equation of the thin annular beam-helix system [4]:

D D M R F Fh b o h h b= ( )κ , (4)
where:
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In this case the equation k Fo h
2 2 0− =κ  is the 

dispersion equation of the «cold» vacuum helix (without 
electron beam), and the equation 
1 0− =M R Fo b b( )κ  is the dispersion equation of 
thin annular electron beam in vacuum. When right-hand 
side of Eq. (4) is small the dispersion equation is 
decomposed, naturally, to two independent equations 
for eigenwaves of helix and beam:

D Dh b= =0 0, . (5)
From Eq. (5) follow relations for phase velocities 

of helical and beam modes: 
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where: Ω b b G2 2= ω  is the reduced beam density, 

G R c I R K Rb o b o b= ( / ) ( ) ( )2 2 κ κ  is the beam de-
pression coefficient characterizing its space-charge, 
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β h h hF F= +( / ( )) /1 1 2  is the phase velocity of the 

helix without beam, β o oV c= / .
From Eq.(6) follows, that the beam density 

influence becomes significant at Ω b o> β . This 
relation allows to find the value of beam density, in 
dependence on the geometry and its velocity, since 
which the beam influence becomes dominant. In 
dimensionless variables β ω β β= / , ,||k c o h  the 
equation (4) will be: 
( )[( ) ( )]β β β β ω β µ ω2 2 2 2 2 21− − − − =h o b bG (7)

Here µ β β κ κ= −G M R M Rh o h o b( ) ( ) / ( )1 2 2 2  is 
the coefficient of beam-wave coupling. If the beam 
interacts with a forward wave of helix (propagated 
along the beam), then the coupling coefficient in a right-
hand side of (7) is positive, and is negative in the case 
of interaction with a backward wave.

In general case the analysis of dispersion 
equation (7) can be carried out numerically, First of all, 
we will be interested in cases of slow waves 
propagation ( β 2 1< < , so k ko|| > > ; k || ≈ κ ). Thus, 
the equation (7) becomes much easier – from 
transcendental it turns into algebraic with respect to β :

( )[( ) ]β β β β α β2 2 2 2 2 2− − − =h o b h bΩ Ω  (8)

where:α = M k R M k Ro h o b( ) / ( )|| || (magnitude α < 1 ).
For further analysis it will be convenient to use 

the frame connected with beam β β δ= +o , 
β βh o= + ∆ and equation (8) can be written as:
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Right-hand side of this equation corresponding to fast 
and slow beam waves is the usual parabola. The left-
hand side has poles of first order in points δ = ∆  and 
δ β= − −∆ 2 o  are corresponding to forward and 
backward wave of helix, and maximum in the point 
δ β= − o  which value is equal − α . 

In order to understand in what conditions the 
instability disappears, it is useful to plot the left-hand 
and right-hand sides of equation (9) on the graph 
(Fig. 1). It is easy to see that the solution of this 
equation always contains two real roots in the region of 
positive and negative values δ :

min ( ( ), )− + − >β β δs o bΩ   
max ( ( ), )β β δs o b− <Ω

Whereas abs( )α < 1 , at values of the beam density 

larger then some critical value ( n nb b> ∗ ) 

Ω b h
2 2 1> −β α/ ( )  and all roots of the equation (8) 

become real.

Fig. 1. Plot of the right-hand side (dashed line) and left-
hand side (solid line) of the beam-loaded dispersion 

equation in the frame of beam.
Under small beam densities β 2 2> > Ω b  we 

search a solution of the equation (8) near to intersection 
of beam and helical modes β β δ= +0 , β βh= 0  
and thus obtain:

δ δ α β( ) ( )2 2 21 2− =Ω Ωb h b (10)

When δ 2 2> > Ω b we find the ordinary cubic 
increment of beam instability: 

Im ( )( )/ / /δ α β= i h b3 24 3 1 3 2 3Ω . (11)

If the beam density grows ( Ω b
2 2> δ ) so, that 

the beam influence on waves propagation in the system 
becomes significant, the Cherenkov’s instability 
disappears: δ α β= − 1 2/ h .

From the view point of physics one can explain it 
in such a way. When the beam density increases the 
splitting of its dispersion curve to fast and slow beam 
modes becomes so large, that the dispersion curves of 
helix and beam do not intersect. 

Now the instability is possible in the case, when 
the beam velocity Vo  is more than wave phase velocity 
in the system β βo> . Really, supposing that 
conditions β β δ= +h , β βh o b= − Ω  are fulfilled, 
we can note, that the second condition is the condition 
of anomalous Doppler radiation. Then from (8) we find 
a quadratic increment (typical for instability on 

anomalous Doppler): Im ( ) /δ α β= i h b2
1 2Ω .

RESULTS OF NUMERICAL ANALYSIS
For numerical analysis of this equation the 

following parameters were selected: β h = 01. , 
k Rb|| = 3 , and ratio R Rh b/ .= 11 . The numerical 
solution’s results of the equation (7) one can see in 
fig.2-3 as a dependence of normalized phase velocity (
V Vph h h/ (Re ) /= β β ) and increment (

γ β β= (Im ) / h ) on the beam density ν b  (

ν ω βb b b hR c≡ 2 2 2 2/ ) for various values of 
detuning between the beam velocity and wave phase 
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velocity in the system ξ  ( ξ β β= o h/ ) for ξ = 10. , 
ξ = 11. , ξ = 12. .

Fig. 2. Normalized phase velocity versus beam density 
for the varies value of detuning ξ : (a) – ξ =1.0, (b) – ξ

=1.1, (c) – ξ =1.2.

Fig. 3. Normalized increment versus beam density for 
various values of detuning ξ : (a) – ξ =1.0, (b) – ξ =1.1, 

(c) – ξ =1.2.

From these plots one can see the following most 
important regularities for influence of the parameter ξ  

and the beam density on Vph  and γ  change:

For the given detuning ξ  there is some beam 
density bounded range space at which the beam 
instability develops and wave excitation by beam takes 
place. 

With growth of the beam density at some beam 
density values there is a maximum increment γ γ= max

. At the further growth of beam density the value γ  
decreases and at ν νb b

2 2= ∗  the instability disappears, 

i.e. at these values ν νb b
2 2> ∗  there are no more dege-

neration in the system – phase velocities of two waves 
which were equal earlier, become various now.

With growth of the detuning parameter ξ  the 
maximum values of increment and the values of beam 
density at which this maximum can be reached increase.

Significant changing of phase velocities of waves 
propagated along the beam takes the place. Two waves 
which propagate along the beam are essentially slowing 
(in comparison with a velocity of wave in the helical 
waveguide without a beam), third is the fast.

The numerical analysis also shows that with 
growth of the velocity detuning ξ  the beam influence 
on the phase velocity of backward wave is decreased. 
But even at ξ ~ 1  the beam influence on the backward 
wave phase velocity is relatively small and is distinct 
only at rather large values of beam density. This result 
is in a qualitative agreement with analytical 
investigations carried out above.

CONCLUSION
Thus, we have carried out analytical 

investigation and numerical analysis for dispersion 
chracteristics and have found increments of instability 
of nonequilibrium system – annular electron beam in 
helical slowing structure for a beam of large density, 
when the frequency of beam natural oscillations is more 
than frequency of oscillations excited by him. Values of 
beam density in dependence on geometry and of beam 
velocity at which the beam influence on dispersion is 
dominant, were determined analytically and 
numerically. It is shown, that the density growth leads 
not only to significant changes in dispersion properties 
of the system, but also to modification of the 
mechanism for generation of oscillations in the system - 
from Cherenkov’s instability to instability on anomalous 
Doppler effect; the further beam density growth leads to 
the instability failure.
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