УДК 574.583(285.2):581

Н.М. МИНЕЕВА, Л.Г. КОРНЕВА, В.В. СОЛОВЬЕВА

Учреждение РАН, Институт биологии внутренних вод им. И.Д. Папанина,

п. Борок, 152742 Ярославская обл., Россия

e-mail: mineeva@ibiw.yaroslavl.ru, korneva@ ibiw.yaroslavl.ru

СОДЕРЖАНИЕ ХЛОРОФИЛЛА *а* В ЕДИНИЦЕ БИОМАССЫ ФИТОПЛАНКТОНА ВОДОХРАНИЛИЩ ВОЛЖСКОГО КАСКАДА (РОССИЯ)

Выполнен анализ содержания хлорофилла a в единице биомассы фитопланктона (хл. a/B) и определяющих его факторов в водохранилищах Волги. Выявлена тесная ($r^2=0,73$) линейная зависимость между биомассой (B) и содержанием хл. a, на основе которой получено уравнение для расчета биомассы: $B=(0,225\pm0,010)$ хл. a. Показана связь хл. a/B с абиотическими характеристиками водной толщи, таксономическим и размерным составом фитопланктона, отражающая сезонные изменения в отдельных водохранилищах и зональные изменения в каскаде.

K лючевые слова: фитопланктон, биомасса, хлорофилл a, хл. a/B, факторы среды, водохранилища Волги.

Введение

В гидроэкологических исследованиях биомассу фитопланктона определяют прямым микроскопическим подсчетом клеток или косвенно по содержанию фотосинтетических пигментов - хл. а или каротиноидов (Butterwick et al., 1982; Foy, 1987). Использование разных методических подходов обусловливает необходимость получения переходных коэффициентов между рассматриваемыми показателями. Это объясняет интерес исследователей к изучению соотношения хл. а и биомассы водорослей. Несмотря на большое количество публикаций по содержанию xл. a в единице биомассы фитопланктона разнотиных водоемов (Минеева, Щур, 2012), для водохранилищ Волги такие данные немногочисленны. Они получены для Иваньковского и Куйбышевского водохранилищ (Пырина, 1966), для Куйбышевского (Экология ..., 1989) и Рыбинского водохранилищ (Елизарова, 1974), для Средней и Нижней Волги (Михеева, Бусько, 1975), но не охватывают волжский каскад целиком. В данной работе проведен сравнительный анализ содержания хлорофилла а в единице биомассы фитопланктона и определяющих его факторов в разных экологических условиях на примере водохранилищ Волги.

Материалы и методы

В работе использованы данные полевых наблюдений, полученные в водохранилищах Волги в июне 1990 и 1991 гг., августе 1989—1991 гг. и октябре 1990 г. Подробные сведения по Рыбинскому вдхр., а также методика сбора и обработки данных опубликованы ранее (Минеева и др., 2013).

© Н.М. Минеева, Л.Г. Корнева, В.В. Соловьева, 2014

Отношение хл./E (% сырой биомассы) рассчитывали по биомассе фитопланктона (E) и содержанию хл. e (хл.), которые определяли в одной и той же пробе воды. Для статистической обработки использованы стандартные компьютерные программы. Достоверность различий хл./E в зависимости от изменения факторов среды оценивали по критерию Стьюдента e, считая различия значимыми при e 1,96 (e 0,05).

Бассейн крупнейшей реки Европы Волги, протяженность которой составляет более 3530 км, расположен в различных природно-климатических зонах от южной тайги на севере до полупустыни на юге. В настоящее время река представляет собой каскад из восьми крупных относительно мелководных водохранилищ замедленного водообмена с площадью зеркала от 249 (Угличское) до 6150 км² (Куйбышевское). Средняя глубина водохранилищ с севера на юг увеличивается от 3,4 до 10 м. От Верхней к Нижней Волге также увеличиваются прозрачность (0,9-1,5 м) и общая сумма ионов (180-260 мг/л), а цветность воды снижается от 60 до 30 градусов (Волга ..., 1978; Litvinov et al., 2009). Волжские воды характеризуются достаточным для развития фитопланктона содержанием биогенных веществ (в среднем 0,88-1,32 мг/л общего азота, 70-140 мкг/л общего фосфора). Трофический статус водохранилищ в период исследований, оцененный по среднему содержанию хл. а, соответствовал мезотрофному для Угличского, Саратовского и Волгоградского (<10 мкг/л) водохранилищ, умеренно эвтрофному для Куйбышевского (10–15 мкг/л) и эвтрофному для Иваньковского, Горьковского и Чебоксарского водохранилищ (>15 мкг/л) (Минеева, 2004).

Результаты и обсуждение

Биомасса фитопланктона и содержание хл. а в водохранилищах Волги изменяются в широком диапазоне. Минимальная биомасса в период исследований составляла 0,19-0,46 мг/л, максимальная - от 5,7 (Волгоградское) до 15,5 мг/л (Чебоксарское). Основной вклад в биомассу в среднем для водоемов в начале лета и осенью вносили Bacillariophyta (от 66 до 97 %). В разгар лета их доля снижалась и 30-81 % суммарной биомассы составляли *Суапорһуtа*. В ряде случаев при сохранении лидирующих позиций диатомовых (русловые Угличское и Саратовское водохранилища в 1989 и 1991 гг.) и/или при увеличении доли Chlorophyta более 10 % (Иваньковское, Угличское) относительное количество Суапорнута в разгар лета не превышало 20 %. В самом южном Волгоградском вдхр. вклад Cyanophyta оставался высоким и в октябре. В отдельные сроки отмечалось заметное обилие криптофитовых и динофитовых водорослей. Их средняя для водоема биомасса в сумме составляла 7-13 % в Угличском (август 1989 г.), Горьковском (июнь 1991 г.), Куйбышевском (август 1990 г., июнь 1991 г.), Саратовском и Волгоградском (август 1990 г.) водохранилищах (табл. 1), а на отдельных станциях достигала 30-40 %.

Содержание хл. *а* варьировало от минимальных 1,5–4,5 мкг/л до максимальных 15–30 мкг/л показателей в мезотрофных Угличском, Саратовском, Волгоградском водохранилищах и до 77–150 мкг/л – в остальных. Средние для водоемов величины в начале июня составили 4,4–11,4 мкг/л, а в октябре 10,3–12,6 мкг/л в водохранилищах Средней Волги и менее 2 мкг/л на Нижней Волге. В августе средние показатели изменялись в более широких пределах: 5,7–14,5 мкг/л в Угличском, Саратовском и Волгоградском водохранилищах; 18,2–33,6 мкг/л в Иваньковском и Горьковском; 9,4–27,9 мкг/л в Чебоксарском и Куйбышевском (см. табл. 1). Диапазон наиболее часто встречаемых величин (42–47 % общего числа наблюдений) составил 1–5 мг/л для биомассы и 10–30 мкг/л для концентрации хл. *а*.

Содержание хл. а в единице биомассы изменялось от минимальных 0.05-0.28 до максимальных 1.25-5.19 величин. Около половины (48 %) всех значений хл./E находились в диапазоне 0,1-0,5 и 30 % величин в диапазоне 0,50-1,0. Предыдущими исследователями (Пырина, 1966; Елизарова, 1974; Михеева, Бусько, 1975; Экология ..., 1989) получены более низкие величины x_{1} ./E, максимальные показатели -0.53-1.79. Это свидетельствует о наметившейся тенденции к росту величин хл./Б волжского фитопланктона. Причиной может быть как изменение баланса крупно- и мелкоклеточных форм в сторону увеличения последних, так и наличие заметного количества зеленых водорослей (Корнева, 2009), характеризующихся повышенным клеточным содержанием хл. a. Chlorophyta - постоянный компонент фитопланктона Волги (см. табл. 1), их доля в суммарной биомассе фитопланктона на отдельных участках достигает 20-50 %. Рост величин хл./E на фоне многолетней изменчивости биомассы и концентрации хл. а четко прослеживается в Рыбинском вдхр. (Минеева и др., 2013).

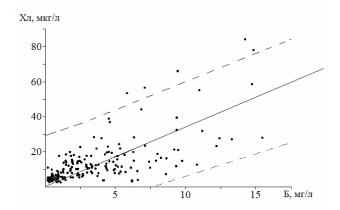
В сезонном цикле пониженным содержанием хл. a в единице биомассы (средние для водохранилищ 0.05-0.11) характеризовался фитопланктон в начале июня в период интенсивного прогрева водной толщи и сезонной смены сообществ. В разгар лета диапазон величин хл./E был наиболее широким: средние величины изменялись от 0.16-0.29 до 0.64-0.93, осенние оставались высокими (0.33-0.85), но были более стабильными (см. табл. 1).

Между биомассой фитопланктона (\mathcal{E} , мг/л) и содержанием хл. (мкг/л) в волжских водохранилищах прослеживается тесная линейная зависимость (см. рисунок), которая для всех данных (n=190) аппроксимируется уравнением:

хл. =
$$(3.23 \pm 0.14)$$
 Б, $r^2 = 0.73$, $F = 497$. (1)

За пределы 95 %-ного доверительного интервала на графике выходят лишь пять из 190 точек. Они относятся к летнему периоду, объединяют станции с биомассой от 5,8 до 14,8 мг/л и высоким (от 53 до 84 мкг/л) содержанием хл. a. Линейная зависимость между хл. a и биомассой получена для многих пресноводных водоемов (Минеева, Шур, 2012) и, в частности, для сезонных изменений хл. a и биомассы в Рыбинском

Таблица І


Содержание хлорофилла а и биомасса фитопланктона в водохранилищах волжского каскада

		Codeparatic and	рофилиа и и опома	COACTANAINE AIOPOGREEIA A II ONOMACCA GRITOLEIAINI DA B BOGIOAPAINEINIMAA BOIMACHOI NACHAGA	в водолранистицал в	Colmenol o nachada		
					Биомасса			
Водохранилище	Год, месяц	xл. a , m кг/л	Обитая мг/т	Bacillariophyta,	Cyanophyta,	Chlorophyta,	${\it Dinophyta}$ $^+$	XI. a/b, %
			(Current, 1911/21	%	%	%	Cryptophyta, %	
1	2	3	4	5	9	7	8	6
				Верхняя Волга				
Иваньковское	111V, 9891	$21,0\pm11,7$	$5,62 \pm 2,14$	40.7 ± 11.4	$37,6 \pm 13,9$	12.5 ± 7.1	$3,4\pm0,8$	$0,64 \pm 0,32$
$(r^2=0,60^*)$	1991, VIII	24.5 ± 10.5	5,33 ± 2,21	$42,9 \pm 8,3$	$21,6 \pm 11,2$	26.5 ± 7.7	$3,6 \pm 2,3$	$0,47 \pm 0,04$
Угличское	1989, VIII	5,7 ± 1,5	$1,00\pm0,40$	53.7 ± 11.0	$7,3 \pm 3,3$	23.5 ± 7.1	$7,4 \pm 3,8$	$0,29\pm0,15$
$(r^2=0,94)$	1991, VIII	14.5 ± 5.1	3.97 ± 2.04	71.8 ± 5.2	10.8 ± 4.7	$11,6\pm3,7$	$2,6\pm1,6$	0.54 ± 0.05
				Средняя Волга				
ţ	1990, VI	6.0 ± 1.2	$1,14 \pm 0,52$	$81,3\pm5,6$	$2,0\pm1,4$	$14,6 \pm 5,4$	0.2 ± 0.2	$0,11\pm0,02$
І орьковское	VIII	18.2 ± 3.1	$3,70\pm1,07$	19.4 ± 5.8	$76,1 \pm 7,0$	2.8 ± 1.1	0.8 ± 0.5	0.55 ± 0.09
(r = 0.38)	X	$12,6\pm1,6$	$4,73 \pm 0,71$	$91,3\pm1,5$	$7,9\pm1,4$	0.7 ± 0.3	0,0	$0,33\pm0,05$
	1991, VI	5.5 ± 0.3	0.89 ± 0.27	$69,6 \pm 7,2$	$1,3\pm0,6$	$5,3\pm1,2$	$11,6 \pm 5,6$	$0,09\pm0,01$
	VIII	31.9 ± 9.2	$5,67 \pm 0,82$	$17,0\pm6.5$	$81,5\pm6,6$	$1,3\pm0,3$	0.1 ± 0.1	0.34 ± 0.03
	1989, VIII	27.9 ± 6.8	$5,12 \pm 1,44$	46.2 ± 5.1	$52,2 \pm 5,5$	$1,2\pm0,4$	0.2 ± 0.1	0.61 ± 0.10
Чебоксарское	1990, VI	8.2 ± 1.6	$2,55\pm0,89$	$95,9 \pm 2,4$	0.1 ± 0.0	$1,7\pm0,5$	$1,1 \pm 2,5$	$0,10\pm0,03$
$(r^2=0,58)$	VIII	10.1 ± 2.2	$2,25 \pm 0,75$	$66,3 \pm 12,2$	$17,4 \pm 13,6$	$10,5\pm3,6$	$2,4\pm1,4$	0.58 ± 0.07
	X	$10,9\pm1,2$	3.91 ± 0.88	92.9 ± 1.4	5.9 ± 1.0	1.0 ± 0.5	0,0	0.37 ± 0.08
	1991, VI	$11,4 \pm 3,1$	$2,53 \pm 0,58$	93.2 ± 1.2	$0,1\pm0,1$	2.0 ± 0.6	2.2 ± 1.0	0.07 ± 0.02
	ШЛ	247+93	7 48 + 2 35	L C1 + E 95	39 6 + 13 2	33+09	03+03	50 0 + Lε 0

Куйбышевское	1989, VIII	$16,6 \pm 2,3$	$5,79 \pm 0,97$	66,6 ± 4,3	30.7 ± 4.6	$1,2\pm0,3$	0.6 ± 0.2	0.32 ± 0.03
$(r^2 = 0,40)$	1990, VI	6.5 ± 1.4	0.81 ± 0.21	$96,6\pm0,9$	0,0	$2,3\pm0,5$	0.4 ± 0.4	0.08 ± 0.01
	VIII	26.0 ± 11.5	$1,41\pm0,55$	$37,3 \pm 10,6$	37.9 ± 11.0	7,2 ± 1,5	$8,5 \pm 3,4$	0.93 ± 0.16
	X	$10,3 \pm 2,5$	$2,38\pm0,83$	89.8 ± 2.6	$9,0 \pm 2,4$	$1,0\pm0,3$	0,0	$0,45\pm0,10$
	1991, VI	$4,4\pm1,0$	0.82 ± 0.15	$65,6 \pm 9,9$	0.5 ± 0.2	6.9 ± 2.4	13.2 ± 6.4	0.05 ± 0.01
	VIII	$9,4\pm1,4$	$4,36\pm0,48$	64.7 ± 5.8	$33.2\pm5.~8$	0.9 ± 0.2	0.5 ± 0.3	0.26 ± 0.03
				Нижняя Волга				
Саратовское	1989, VIII	8.8 ± 0.9	3.82 ± 0.87	74,1 ± 7,9	$22,3 \pm 7,1$	$1,5\pm0,4$	0.9 ± 0.3	0.27 ± 0.04
$(r^2=0,40)$	1990, VIII	$13,4 \pm 7,2$	$1,08\pm0,18$	$16,4 \pm 3,3$	60.9 ± 7.4	7.0 ± 2.6	$7,3 \pm 3,2$	0.59 ± 0.07
	X	$1,6\pm0,1$	0.32 ± 0.04	$84,3 \pm 5,5$	12.8 ± 4.3	$1,7\pm0,5$	0.2 ± 0.2	0.55 ± 0.09
	1991, VIII	$10,4\pm2,0$	$7,66\pm1,05$	85,2 ± 4,5	13.6 ± 4.4	0.8 ± 0.3	0.2 ± 0.1	0.16 ± 0.02
Волгоградское	1989, VIII	10.6 ± 1.8	$2,76 \pm 0,61$	$22,7 \pm 6,0$	70.1 ± 7.4	$2,4\pm0,7$	$2,2\pm0,7$	0.31 ± 0.04
$(r^2=0,67)$	1990, VIII	$10,0\pm1,2$	0.99 ± 0.30	28,9 ± 7,8	45.9 ± 11.8	$5,4 \pm 1,8$	9.3 ± 6.9	$0,72 \pm 0,07$
	X	$1,4\pm0,1$	0.18 ± 0.02	52,6 ± 7,3	45,9 ± 7,7	$1,4\pm0,8$	0,0	0.85 ± 0.16
	1991, VIII	6.9 ± 1.9	3.18 ± 1.03	44,9 ± 8,2	$52,2 \pm 8,3$	$1,6\pm0,4$	0.6 ± 0.5	$0,22\pm0,01$

Примечание. Здесь и в табл. 2, 3 приведены средние со стандартной ошибкой значения; $r^2 -$ коэффициент детерминации между биомассой и хлорофиллом.

и Шекснинском водохранилищах (Минеева и др., 2013). Коэффициенты детерминации между биомассой и хл. a (r^2) достоверны во всех водохранилищах волжского каскада (см. табл. 1).

Зависимость между содержанием хл. a и биомассой фитопланктона (E) в водохранилищах волжского каскада (пунктир -95 %-ный доверительный интервал)

Основываясь на полученной зависимости (1), для ориентировочной оценки биомассы можно использовать уравнение (2). При концентрации хлорофилла от 1 до $100~{\rm Mkr/}$ л относительная погрешность расчета биомассы составляет $\pm 4,4~\%$.

$$B = (0.225 \pm 0.010)$$
 хл., $n = 190, r^2 = 0.73, F = 497.$ (2)

Вариабельность хл. a/B в природных условиях связывают с факторами среды и составом сообществ. Большинство факторов неотделимо друг от друга, что затрудняет оценку их воздействия на хл./B. Так, поступление солнечной радиации и, соответственно, температура воды меняются в течение суток. Они напрямую связаны с сезоном года, а более масштабно — с географической широтой. Анализ влияния внешних условий на фитопланктон Волги представляет особенный интерес, поскольку формирование среды обитания альгоценозов в волжском каскаде в значительной степени определяется географической зональностью.

Связь хл. a/B с температурными и световыми условиями, биомассой и составом фитопланктона, как и для их сезонных изменений в Шекснинском и Рыбинском водохранилищах (Минеева и др., 2013), с определенными вариациями проявляется в масштабах всего каскада. Как и в отдельных водохранилищах, минимальные показатели хл. a/B получены при температуре ниже $10\,^{\circ}$ С, максимальные — в интервале $10-15\,^{\circ}$ С, а выше $15\,^{\circ}$ С величины хл. a/B снижаются (табл. 2). Эти изменения достоверны по критерию Стьюдента, однако они могут быть связаны не только с непосредственным температурным влиянием, но и с особенностями состава сообществ.

Tаблица 2 Изменение отношения хл. a/B по градиенту абиотических факторов, концентрации хлорофилла и биомассы фитопланктона

Фактор	Пределы	хл./Б, %	Фактор	Интервал	хл./Б, %
	5-10	$0,32 \pm 0,04$		<0,5	$1,17 \pm 0,10$
Температура, °С	10-15	$0,90 \pm 0,08$	Общая	0,5-1	$0,66 \pm 0,05$
	15-20	0.51 ± 0.05	биомасса,	1-3	$0,51 \pm 0,03$
	>20	$0,52 \pm 0,04$	мг/л	3-5	0.38 ± 0.04
	0,5-1,0	$0,55 \pm 0,12$		5-10	$0,27 \pm 0,02$
Прозрачность, м	1,0-1,5	$0,65 \pm 0,10$		>10	$0,21 \pm 0,04$
	1,5-2,0	$0,47 \pm 0,06$	Baillariophyta,	<10	$0,47 \pm 0,06$
	>2	$0,56 \pm 0,11$	% общей	10-50	$0,59 \pm 0,04$
	<50	$0,52 \pm 0,07$	биомассы	50-70	$0,50 \pm 0,05$
Цветность, град.	50-100	$0,76 \pm 0,08$		70-90	$0,57 \pm 0,08$
				>90	$0,54 \pm 0,07$
Электропровод-	<200	$0,62 \pm 0,07$	Cyanophyta,	<10	$0,62 \pm 0,05$
ность,	200-250	0.83 ± 0.11	% общей	10-50	$0,52 \pm 0,05$
µСим/см	250-300	$0,51 \pm 0,05$	биомассы	50-90	$0,49 \pm 0,04$
	>300	$0,45 \pm 0,10$		>90	0.35 ± 0.07
	0,7-1,0	$0,27 \pm 0,06$	Chlorophyta,	1-5	0.36 ± 0.03
Общий азот, мг/л	1,0-1,2	$0,48 \pm 0,08$	% общей	5-10	$0,60 \pm 0,04$
	1,2-1,5	$0,57 \pm 0,08$	биомассы	10-20	0.82 ± 0.10
	>1,5	$0,84 \pm 0,22$		>20	0.81 ± 0.10
	50-100	$0,43 \pm 0,07$	Cryptophyta +	<1	0.37 ± 0.03
Общий фосфор,	100-150	$0,52 \pm 0,07$	Dinophyta,	1-5	$0,46 \pm 0,03$
мкг/л			% общей	5-10	$0,79 \pm 0,09$
	150-200	$0,73 \pm 0,21$	биомассы	10-20	0.84 ± 0.08
				>20	0.93 ± 0.09
	<5	0.73 ± 0.06		<1	0.32 ± 0.06
Хлорофилл а,	5-10	$0,56 \pm 0,07$	N/B*,	1-5	0.57 ± 0.05
мкг/л	10-20	$0,51 \pm 0,10$	отн. ед.	5-10	0.58 ± 0.07
	20-50	$0,40 \pm 0,03$		10-20	$0,67 \pm 0,08$
				>20	$0,70 \pm 0,22$

^{*} N/В — соотношение численность/биомасса.

Характеристиками подводных световых условий служат прозрачность и цветность воды. Максимальные значения хл. a/B получены при показателях прозрачности 1,0-1,5 м, близких к средним для водохранилищ, что может соответствовать области светового насыщения. При более низкой, как и при более высокой прозрачности, отмечается незначительное снижение значения хл. a/B. Однако изменения показателей отношения хл. a/B с ростом прозрачности не являются значимыми, в отличие от изменений, связанных с цветностью. В мезогумозных водах при цветности выше 50 градусов отмечается рост величин хл. a/B по сравнению с таковыми в менее окрашенных водах (см. табл. 2). Это подтверждает двойное воздействие на фитопланктон

гуминовых соединений, которые не только ухудшают подводные световые условия, меняя спектральный состав света и уменьшая глубину трофогенного слоя, но и стимулируют развитие растительных клеток (Guminski, 1983). Значимое снижение показателей хл. a/B происходит с ростом минерализации при электропроводности выше 250 мкСим/см. В волжском каскаде рассмотренные показатели, во многом определяющие условия развития фитопланктона, четко меняются с севера на юг в зависимости от особенностей водосбора водохранилищ и объема боковой приточности. Исходя из этого, можно предположить, что изменения отношения хл./B, имеющие тенденцию к снижению в водах с более высокой прозрачностью, более низкой цветностью и повышенной минерализацией, в определенной степени связаны с географической зональностью и формированием стока Волги.

Положительное влияние биогенов на отношение хл. a/Б, отмеченное исследователями (Трифонова, 1979; Ahlgren, 1970), в волжском каскаде, на первый взгляд, проявляется достаточно четко: хл. a/Б увеличивается с ростом и общего азота, и общего фосфора (см. табл. 2). Однако эти изменения значимы лишь при росте $N_{\text{общ}}$ до 1 мг/л и недостоверны во всех остальных случаях, что, вероятно, обусловлено высоким, не лимитирующим развитие фитопланктона, содержанием биогенов в водохранилищах Волги (Минеева, 2004), что считается типичным для речных систем (Vannote et al., 1980)

Анализ связи с развитием фитопланктона показывает, что хл. a/B плавно снижается с ростом биомассы и изменения достоверны в интервале от 1 до 10 мг/л (см. табл. 2). Уменьшение значения хл. a/B при высокой биомассе отмечено для озера Красного (Трифонова, 1976), для Рыбинского (Елизарова, 1974) и Братского (Первичная ..., 1983) водохранилищ. Максимальные показатели отношения хл. a/B соответствуют биомассе менее 0,5 мг/л, отражая влияние таксономической и размерной структуры сообществ. Отмечается также снижение этого показателя с ростом концентрации хлорофилла, но оно незначимо во всем диапазоне.

Состав фитопланктона в водоемах умеренной зоны, по мнению многих авторов, не оказывает существенного влияния на хл. a/\overline{b} (Елизарова, 1974; Трифонова 1979; Курейшевич, 1983; Ahlgren, 1970; Nicholls, Dillon, 1978; Desortova, 1981). Однако в Рыбинском и Шекснинском водохранилищах нами выявлено достоверное снижение показателя хл. a/B с ростом вклада в суммарную биомассу водорослей одного из доминирующих отделов (Bacillariophyta или Cyanophyta), которые также являются основными доминантами всего волжского фитопланктона. В масштабах каскада при разнообразии внешних условий получается несколько иная ситуация. Показатели хл. a/B мало меняются во всем диапазоне относительной биомассы диатомей, НО снижаются с ростом относительного обилия *Cyanophyta*. Значимый рост отношения хл. a/B, что соответствует также данным других авторов (Елизарова, 1974; Курейшевич, 1983; Курейшевич, Пахомова, 1989; Щур, 2006), прослеживается с увеличением биомассы зеленых водорослей более 5 % общей биомассы, что обусловлено повышенным содержанием пигмента в их клетках. Аналогичными изменениями этого отношения сопровождается также рост относительного обилия динофитовых и криптофитовых водорослей от 5 % и выше. Изменения отношения хл. a/B с увеличением доли каждого из этих отделов однотипны, поэтому в табл. 2 приведены средние показатели. Данные об изменчивости отношения хл. a/B этих таксономических групп противоречивы (Ahlgren, 1970; Moustaka-Gouni, 1989; Felip, Catalan, 2000; Висhaca et al., 2005), что, вероятно, связано с вариабельностью их размерного состава.

Известно, что отношение хл. a/B у мелких форм выше, чем у крупных, и разница может достигать двух порядков (Шур, 2006). Для волжского фитопланктона (Корнева, 1993) с ростом размера клеток четко прослеживается снижение отношения хл. a/B как для непосредственного показателя размерной структуры — среднеценотического объема, так и для косвенного — отношения численность/биомасса (N/B). Максимальное содержание хлорофилла в единице биомассы получено для альгоценоза со средним размером клеток менее $1000 \, \text{мкм}^3$, минимальное — более $3000 \, \text{мкм}^3$ или при отношении N/B, соответственно, более $20 \, \text{и}$ менее $1 \, \text{(табл. 2, 3)}$.

 $\label{eq:Tadinuqa} {\it Tadinuqa~3}$ Условия развития разноразмерного фитопланктона в водохранилищах Волги

	Размерная фракция, мкм ³				
Показатель	< 1000	1000-2000	2000-3000	3000-6000	
хл. а/Б, %	$0,95 \pm 0,12$	$0,74 \pm 0,06$	$0,33 \pm 0,04$	$0,26 \pm 0,04$	
Температура °С	$17,1 \pm 0,7$	$18,4 \pm 0,3$	$18,3 \pm 0,4$	$18,5 \pm 0,4$	
Прозрачность, м	$1,1 \pm 0,0$	$1,1 \pm 0,0$	$1,2 \pm 0,1$	$1,3 \pm 0,1$	
Цветность, градусы	56 ± 2	52 ± 1	48 ± 3	39 ± 1	
Электропроводность, мкСим/см	216 ± 9	242 ± 6	266 ± 11	290 ± 7	
Общий азот, мг/л	$1,28 \pm 0,09$	$1,10 \pm 0,03$	$0,91 \pm 0,05$	$0,78 \pm 0,08$	
Общий фосфор, мкг/л	140 ± 12	116 ± 4	104 ± 4	105 ± 9	

Анализ условий, при которых предпочтительно развивается та или иная размерная группа, показывает, что мелкоклеточный фитопланктон с более высоким показателем отношения хл. a/B тяготеет к менее минерализованным окрашенным водам с повышенным содержанием органических (цветностью) и биогенных веществ. Фактически это соответствует как сезонным изменениям гидрохимического режима водохранилищ, так и зональным изменениям цветности и электропроводности в волжском каскаде (Litvinov et al., 2009). Различия

температурных условий и прозрачности для размерных групп незначительны (табл. 3).

Выводы

Сопряженный анализ биомассы фитопланктона и содержания хлорофилла в планктоне водохранилищ Волги показал тесную линейную связь между этими показателями. Средние показатели для водохранилищ хл. a/B сопоставимы с данными 1960-х 1970-х гг., а более высокие максимальные величины свидетельствуют о наметившемся росте отношения хл. a/B волжского фитопланктона. Снижение этого показателя прослеживается в водах с более высокой прозрачностью, более низкой цветностью и повышенной минерализацией, соответствует изменчивости абиотических условий в каскаде, связанной с географической зональностью. По отношению к таксономическому составу выявлено снижение хл. a/\overline{b} при высоком относительном обилии Cyanophyta и увеличение хл. a/B с ростом относительной биомассы Chlorophyta, Dinophyta и Cryptophyta. По отношению к размерному составу прослеживается снижение показателей хл. a/B с увеличением среднеценотического размера клеток. Максимальными показателями отношения хл./E характеризуется мелкоклеточная (менее 1000 мкм³) фракция фитопланктона при отношении N/B более 20, которая окрашенные предпочитает менее минерализованные воды повышенным содержанием органических (цветностью) и биогенных веществ, что соответствует как сезонным изменениям гидрохимических характеристик в водохранилищах, так и их зональным изменениям в каскаде.

СПИСОК ЛИТЕРАТУРЫ

- *Волеа* и ее жизнь / Под ред. Н.В. Буторина, Φ .Д. Мордухай-Болтовского. Л.: Наука, 1978. 348 с.
- *Елизарова В.А.* Содержание фотосинтетических пигментов в единице биомассы фитопланктона Рыбинского водохранилища // Флора, фауна и микроорганизмы Волги. Рыбинск: ИБВВ РАН, 1974. С. 46—66.
- Корнева Л.Г. Фитопланктон Рыбинского водохранилища: состав, особенности распределения, последствия эвтрофирования // Современное состояние экосистемы Рыбинского водохранилища. С.Пб.: Гидрометеоиздат, 1993. С. 50–113.
- Корнева Л.Г. Формирование фитопланктона водоемов бассейна Волги под влиянием природных и антропогенных факторов: Автореф. дис. ... д-ра биол. наук. С.Пб.: Ин-т озероведения РАН, 2009. 48 с.
- *Курейшевич А.В.* Пигменты фитопланктона и факторы, влияющие на их содержание в водоеме (на примере днепровских водохранилиш): Автореф. дис. ... канд. биол. наук. Киев: Ин-т гидробиологии АН УССР, 1983. 23 с.
- *Курейшевич А.В., Пахомова М.Н.* Некоторые факторы, влияющие на относительное содержание хлорофилла в биомассе фитопланктона // Конф. по споровым растениям Средней Азии и Казахстана: Тез. докл. Ташкент, 1989. С. 61–62.

- *Минеева Н.М.* Растительные пигменты в воде волжских водохранилищ. М.: Наука, 2004. 156 с.
- *Минеева Н.М., Щур Л.А.* Содержание хлорофилла a в единице биомассы фитопланктона (Обзор) // Альгология. 2012. **22**(4). С. 441—456.
- Минеева Н.М., Корнева Л.Г., Соловьева В.В. Сезонная и многолетняя динамика содержания хлорофилла a в единице биомассы фитопланктона Шекснинского и Рыбинского водохранилищ (Россия) // Там же. -2013. -23(2). С. 150–166.
- *Михеева Т.М., Бусько С.А.* К изучению фитопланктона Волги и его продукционных особенностей // Вод. рес. 1975. (1). С. 101—109.
- *Первичная* продукция в Братском водохранилище / Под ред. О.М. Кожовой. М.: Наука, 1983. 346 с.
- Пырина И.Л. Первичная продукция фитопланктона в Иваньковском, Рыбинском и Куйбышевском водохранилищах в зависимости от некоторых факторов // Продуцирование и круговорот органического вещества во внутренних водоемах. М.; Л.: Наука, 1966. С. 249—270.
- *Трифонова И.С.* Фитопланктон и его продукция // Биологическая продуктивность озера Красного. Л.: Наука, 1976. С. 69–104.
- *Трифонова И.С.* Состав и продуктивности фитопланктона озер Карельского перешейка. Л.: Наука, 1979. 168 с.
- *Шур Л.А.* Структура и функциональные характеристики бактерио- и фитопланктона в экосистемах водоемов разного типа: Автореф. дис. ... д-ра биол. наук. Красноярск: Гос. аграр. ун-т, 2006. 31 с.
- Экология фитопланктона Куйбышевского водохранилища / Под ред. С.М. Коновалова, В.Н. Паутовой. Л.: Наука, 1989. 304 с.
- Ahlgren G. Limnological studies of lake Norrviken, a eutrophicated Swedish lake. II. Phytoplankton and its productivity // Schwiz. J. Hydrobiol. -1970. -32(2). -P. 353-396.
- Buchaca T., Felip M., Catalan J. A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lake // J. Plankt. Res. 2005. 27(1). P. 91–101.
- Butterwick C., Heaney S.I., Talling J.F. A comparison of eight methods for estimating the biomass and growth of planktonic algae // Brit. Phycol. J. 1982. 17(1). P. 69–79.
- Desortova B. Relationship between chlorophyll-a concentration and phytoplankton biomass in several reservoir in Czechoslovakia // Int. Rev. Ges. Hydrobiol. 1981. 66(2). P. 153–169.
- Felip M., Catalan J. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima // J. Plankt. Res. - 2000. - 22(1). - P. 91-105.
- Foy R.H. A comparison of chlorophyll-a and carotenoid concentrations as indicator of algal volume // Freshwat. Biol. -1987. 17(2). P. 237-250.
- Guminski S. Outline of the history of studies of the effect of humic compounds on algae // Oceanologia. 1983. 17. P. 9—18.

- Litvinov A.S., Mineeva N.M., Papchenkov V.G. et al. Volga River Basin // Rivers Europe. Amsterdam: Elsevier, 2009. P. 23–57.
- *Moustaka-Gouni M.* Temporal and spatial distribution of chlorophyll *a* in Lake Volvi, Greece // Arch. Hydrobiol. Suppl. 1989. **82**(4). P. 47–185.
- Nicholls K.H., Dillon P.J. An evaluation of phosphorus chlorophyll phytoplankton relationship for lakes // Int. Rev. Ges. Hydrobiol. 1978. 63(2). P. 141-154.
- Vannote R.L., Minshall G.W., Cummins K.W. et al. The river continuum concept // Can. J. Fish. Auqat. Sci. -1980. -37(1). -P. 130-137.

Поступила 24 мая 2012 г. Подписала в печать А.В. Лищук-Курейшевич

N.M. Mineeva, L.G. Korneva, V.V. Solovyeva

Institute for Biology of Inland Waters RAS, Settle of Borok, Nekouz District, 152742 Yaroslavl Region, Russia e-mail: mineeva@ibiw.yaroslavl.ru, korneva@ ibiw.yaroslavl.ru

CHLOROPHYLL CONTENT PER UNIT OF PHYTOPLANKTON BIOMASS IN THE VOLGA RIVER RESERVOIRS

A comparative analysis of chlorophyll a content per phytoplankton biomass unit (chl. a/B) and the factors that influence it in reservoirs of the Volga River was made. The close linear relationship between biomass and chl. a ($r^2 = 0.73$) provides an equation for estimating biomass: $B = (0.225 \pm 0.010)$ chl. a. Dependence on abiotic characteristics of waterbody, the taxonomic and size composition of phytoplankton, testify the seasonal changes of chl. a/B in reservoirs and zonal changes in the cascade.

K e y w o r d s: phytoplankton, biomass, chlorophyll, chl. a/B, environmental factors, Volga River reservoirs.