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1. INTRODUCTION

The  conventional  FEL-devices  are  based  on 
relativistic electron beams and magnetic undulators. For 
wavelength  shortening  and  beam  current  arising  the 
plasma  undulator  has  been  proposed.  Taking  into 
account  the  recent  achievements  in  high  power 
generation  (e.g.  above  1012 W  for  the  corrugated 
systems) it is alluring to use these intense HF waves as 
an undulator. Let  the additional  REB of energy mc2γ1 

generates  the  eigenmode  of  the  slow  wave  structure 
(SWS) with frequency  ω1  and wave number  k1= 2π/D 
which propagates oppositely to the main REB direction. 
The main REB of energy mc2γ2  being undulated in the 
fields of excited wave (by other words in the fields of 
induced  charges)  irradiates  the  other  eigenmode  with 
frequency ω2 and wave number k2. Using laws of energy 
and momentum conservation

              ω2  = ω1 + ωb , k2 = kb - k1

we can obtain the following relation for the frequency 
of irradiated wave caused by the FEL mechanism:
                 ω2 = k1  ( v1 + v2  ) ( 1+ v2 /c ) γ2 

2 
where v1 and v2  are the velocities of the additional and 
the main REB, respectively.  It  is  evident  that  for  the 
ultrarelativistic case, i.e.  v1 =  v2 =  c  it gives a known 
formula:            ω2 = 2πc/D 4 γ2 

2.
From the other side, the novel kind of SWS with 

plasma assistance is being developed now. The vacuum 
SWS,  which  are  used  in  Cherenkov  microwave 
generators  and  amplifiers,  have  an  essential 
shortcoming  due  to  the  surface  character  of  a  slow 
wave. The decreasing of longitudinal  field component 
from periphery  to  system axis  causes  the  fall  of  the 
coupling coefficient of the near-axis beam with a slow 
wave.  It  leads  to  decreasing  the  instability  in  growth 
rates. This shortcoming is especially strong in the high 
frequency  range.  In  the  other  kind  of  SWS  - 
homogeneous plasma waveguides [1] - the slow waves 
are  volumetric  and  have  the  maximal  longitudinal 
electrical field at the axis where charged particles move. 
However,  in  the  non-relativistic  region  of  phase 
velocities the plasma waves are quasi-longitudinal, with 
small transversal components of fields, that complicates 
the  microwave  energy  input  and  output.  Hybrid 
systems,  which  are  promizing  in  the  non-relativistic 
region of phase velocities, were offered for the first time 
in KIPT. They combine the advantages of vacuum and 
plasma  systems  and  have  no  shortcomings  marked 
above. The hybrid structure uses a plasma waveguide as 
the beam transition channel of vacuum SWS [2,3]. In 
such a structure the beam-plasma interaction plays the 
determining  role  in  excitation  of  oscillations,  and 
periodic  waveguide  system is  used  for  power  output. 
The coaxial systems have an additional advantage due 

to  the  presence  of  a  cable  mode  providing  a  wide 
frequency band.

In this work we investigate the first stage of the 
problem  considered,  namely  the  interaction  of  the 
electron beam with the plasma-filled coaxial corrugated 
waveguide.  The  dispersion  equation,  which  describes 
interaction  of  REB with  SWS,  is  obtained.  The  non-
linear stage and excitation efficiency is considered.

2. THE DISPERSION EQUATION
The axially-symmetric waveguide, formed by two 

coaxial ideally conducting cylinders is considered. The 
inner cylinder is smooth, the external one is corrugated 
sinusoidally with a period D. In the cylindrical system 
of coordinates (r,ϕ,z) waveguide surfaces are given as:

Rs(z)=R0s=const, Rg(z)=R0g(1+δcos(k0z)), k0=2π/D,
where  .10,20,,)1(00 < <<≤≤∞<<− ∞−< δπϕδ zRR gs  
It  is  supposed,  that  waveguide  is  filled  with 
homogeneous plasma and is placed in a strong magnetic 
field  pc ω> >ω ,  where  cω  is the cyclotron frequency 

and pω  is the electron plasma frequency. Waves of E-

type  ),,( ϕHEE rz  are  considered.  We  solve  the 
Maxwell  equations  system  together  with  boundary 
conditions for tangential  component of electrical field 
on a surface of waveguide and we find the dispersion of 
electromagnetic  waves  )( 3kω  proceeding  from  a 
condition of existence of the non-trivial solution of this 
system, as it was made in [4].

2.1. THE DISPERSION EQUATION OF PLASMA-
FILLED COAXIAL WAVEGUIDE

As the corrugated waveguide is periodical along Z-
axis, components of electromagnetic field, according to 
the  Flocke  theorem,  can  be  presented  as  a  seriesof 

spatial  harmonics:  ( ) ∑
∞
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nerfAzrF ||)(,  ,  where 

nkkk n 03|| += ,  3k  is  the  longitudinal  wave  number. 
For  axially-symmetric  E-wave  fields  in  the  region 
between internal and external cylinders are:
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where ( )2
||

222
nn kck −ωε≡

 ⊥ , 221 ωω−=ε
  p , 

epp men 22 4π=ω  is the electron plasma frequency, pn  

is the plasma density, e−  and em  are the charge and 
mass of electron accordingly, 

( ) ),()()()( 0000000 rkNRkJrkJRkNrkF nsnnsnn ⊥⊥⊥⊥⊥ −=  
( ) ×= = ⊥⊥ )( 001 snn RkNrkF  

);()()( 1001 rkNRkJrkJ nsnn ⊥⊥⊥ −× 1010 ,,, NNJJ  are 
cylindrical Bessel and Nejmann functions.
The  boundary  condition  on  corrugated  surface  of 
waveguide can be written in components of electrical 
field zE  and rE  in the following form: 

( ) ( ) ( ) 0)()()( =θ⋅+ ztgzREzRE grgz ,            (2)

where  )sin( 000 zkRkR
dz
dtg gg δ−==θ .  Substituting 

fields (1) into (2) after appropriate transformations we 
received  the  following  infinite  system  of  algebraic 
equations for nA :
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where  ( ))cos(1)( 00 zkRkzf gnn ⋅δ+≡ ⊥ .  The  system  (3) 
has  the non-trivial  solution,  only if  its  determinant is 
equal  to  zero.  It  defines  the  required  dispersion 
equation:

.0det =mnC                              (5)
2.2. THE DISPERSION EQUATION FOR 

STRUCTURE WITH A BEAM
Let  the  axially-symmetric  tubular  infinitely  thin 

monoenergetic  electronic  beam  propagates  along  the 
system axis. Beam density  [ ] ( )bbbb RrRevIrn −δπ= 2)( , 
where  bv ,  I,  bR  are velocity of particles,  current and 
radius of beam, respectively. We consider fields in two 
regions:  I  -  between  an  internal  cylinder  surface  and 
beam,  II  -  between  beam  and  external  corrugated 
cylinder surface. The boundary conditions on beam for 
fields zE  and rE  are:
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where  [ ] ( ) ( ) bbb RfRff γ−−+≡ ,00  is  the  relativistic 
factor of beam. In the region 1 field can be presented in 
the form (1). In the region 2 we have:
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We  matched  fields  from  regions  I  and  II  on  the 
boundary  bRr =  taking  into  account  boundary 
conditions (6) and satisfying boundary conditions (2) on 
corrugated  waveguide  surface.  Similarly  to  the  case 
with no beam we obtained the dispersion equation in the 

form (5) with the only difference, that [ ])(0 zfF n  in (4) 
should be replaced by:
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where 
( ) ( ) ( ) ( ) ( )21021021,, RkNRkJRkJRkNRRkG ninninni ⊥⊥⊥⊥⊥ −≡

.
It is easy to notice, that when 0→I  function 

),,,( 30 nkzT ω  turns into function [ ])(0 zfF n . The choice 
of a thin beam allowed us to "extract" beam component 
from arguments of cylindrical functions, where it would 
enter in the case of REB with final thickness [4]. This 
eliminates set of beam harmonics appearing in case of 
beam  with  final  thickness  when  bnvk ||→ω ,  and 
simplifies the analysis of results.

3. EXCITATION EFFICIENCY
The linear stage of interaction of electronic beam 

with  a  synchronous  wave  of  corrugated  coaxial  line 
continues  until  non-linear  processes  of  multi-mode 
interactions  appear  -  disintegrations,  modulation 
instability etc. They redistribute microwave power of a 
growing synchronous wave across a spectrum and that 
stabilizes level of excited microwave oscillations. The 
essential  mechanism  of  instability  stabilization  of 
microwave oscillations build-up, which is dominating, 
is the beam trapping in a field of the main synchronous 
wave  (non-linearity  of  "wave  -  particle"  type)  [7]. 
Growth rate of this wave was determined in the linear 
theory. In this case [7] the saturation takes place when 
growth rate  )Im(ω  is comparable with frequency  Ω of 
trapped oscillations of beam particles in the wave field: 

Ω≈ω )Im( ,                              (9)

where  ,3
3max

b

z

m
keE

γ
=Ω  zmaxE  is  the  saturation 

amplitude  of  the  longitudinal  component  of  electrical 
field intensity. From (9) it follows:
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The received expressions allow to estimate efficiency of 
excitation  of  microwave  fields  in  the  structure  under 
consideration. The efficiency of generation was defined 
as the ratio  of  a  microwave power flow to a  flow of 
electronic  beam  particles  kinetic  energy  through  the 
waveguide  cross  section.  To  calculate  the  microwave 
power  flow  the  eigenwaves  of  coaxial  corrugated 
waveguide without beam were taken as:
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i.e.  it  was  supposed,  that  the  basic  contribution  to  a 
longitudinal  electrical  field  gives  the  harmonics  with 
number 0, and the power flow is determined by fields of 
harmonics  with  numbers  0  and  -1.  As  a  result  the 
following expression for efficiency was obtained:
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where gv  is the group velocity of wave.
Results  of  investigations  of  influence  of 

various parameters of electron beam - SWS system on 
the efficiency value are presented below. For calculation 
of ω, 3k  and Im(ω) the dispersion equation, taking into 
account  only  harmonics  with  numbers  0  and  -1,  was 
taken. The beam current was equal to 400 A, cmD 10= , 

cmR s 20 = ,  cmR g 40 = ,  cmRb 3= ,  1,0=δ .  The 

frequency ω, appropriate to the wave number  3k  of a 
maximum of growth rate of the instability Im(ω) in case 
with no beam, was substituted into expression (30). The 
calculations  were  carried  out  for  a  case  of  vacuum 
structure,  and also for the following values of plasma 
density:  1pn =1,3683·1010 cm-3,  2pn =2.2619·1010 cm-3, 

3pn =2,8·1010 cm-3, 4pn =1,3·1010 cm-3.

Table 
βb γb Sb

(MW)
 η (%) for plasma densities:

np=0 np1 np2 np3 np4

0,6 1,25 51,2 1,08 1,17 1,23 1,27 2,84
0,7 1,4 82 1,69 1,74 1,79 1,81 2,44
0,8 1,67 136,5 2,69 2,71 2,72 2,73 2,98
0,9 2,29 265 2,55 2,62 2,60 2,63 2,75

In the Table the values of η for various densities 
of plasma and for various values of cvbb =β , and the 
appropriate  values  of  beam  energy  flow  Sb are 
presented. Let us note the following: firstly, η increases 
with the growth of plasma density, and with  15,1=γ b  
for 311

4 103,1 −⋅= cmn p  η becomes more than two and a 
half times as much as the vacuum efficiency. Secondly, 
with growth of bγ  for vacuum case and for all plasma 

cases  except  4pn ,
 η increases  reaching  the  maximal 

value with 67,1=γ b  and then decreases with 29,2=γ b .
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