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INTRODUCTION

At present,  several  methods of  obtaining high-
current  ion  beam,  which  are  based  on  the  use  of 
induction  accelerators  and  are  applied  to  inertial 
controlled fusion (ICF) research, are being considered 
[1-3]. To date, kiloampere ion beams with energies of 
several  hundred  keV  have  been  produced  in  high-
current  linear  induction  accelerators  (linac)  with 
collective focusing [4-6]. The power of the hollow high-
current  ion beam (HHCIB) for ICF purposes must  be 
several  orders  greater,  with  rather  stringent 
requirements  on  beam  brightness.  Therefore,  when 
developing  a  driver  for  ICF  on  the  basis  of  a  high-
current linac, it is necessary to investigate a number of 
important physical problems: (1) the formation of high-
current beams in injector;  (2) the provision of efficient 
magnetic  insulation  for  accelerating  gaps;  (3) charge 
compensation of the ion beam in the transport channel 
and  in  the  magneto-insulated  accelerating  gaps;  (4) 
effective acceleration and stability of the ion beam in 
accelerating  channel;  and  (5) transport,  focusing,  and 
space-time compression of HHCIBs.

In  linac,  the  conventional  way  of  charge  and 
current compensation [7, 8] is inefficient. In [9, 10], a 
new mechanism for  the  neutralization  of  HHCIBs  in 
axially  symmetric  magneto-insulated  gaps  was 
proposed.  Its  physical  meaning  is  that  a  specially 
injected compensating electron beam drifts through the 
cusp due to self-consistent azimuthal magnetic field and 
an electric field caused by a small radial separation of 
ion and electron beams.

In  [11-13],  the  investigation  results  of  the 
acceleration, and the charge and current compensation 
of  HHCIBs  in  one  and  two linac  cusps  are  reported. 
These results have shown that both in the presence and 
in  the  absence  of  an  accelerating  electric  field,  the 
following  effects  take  place:  (1) charge  and  current 
compensation of  HHCIB in the accelerating gaps;  (2) 
stability of the ion beam during times that substantially 
exceed  the  inverse  ion  Langmuir  and  Larmor 
frequencies. The performed numerical simulations have 
also  shown  that  in  the  drift  space  between  two 
accelerating gaps the current and charge compensation 
of the ion beam proved to be insufficient because of a 
substantial difference in the electron and ion velocities 
acquired  up  to  the  time  of  the  transit  of  the  beams 
through the drift gap. As a result, the positive potential 
of the self-consistent field in the drift space leads to the 
spread  and  deceleration  of  the  ion  beam  and, 
consequently, to the degradation of the beam brightness. 
The  positive  space  charge  in  the  drift  gap  can  be 
compensated  by  injecting  thermal  electrons  into  it.  It 
was shown that a preliminary injection of cold electrons 
permits to eliminate broadening and decelerating an ion 
beam  in  the  drift  gap  and  to  provide  its  additional 
focusing.

In  this  work,  the  investigation  directed  to:  (1) 
reaching  of  the  optimal  relation  between the  external 
electric field parameters and the compensating electron 
beam parameters;  (2) defining of the optimal thickness 
of  annular  beam at which the ion beam is effectively 
accelerated and at a time is remaining compensated and 
not losing a stability.

MATHEMATICAL AND DISCRETE MODEL
To describe the collisionless plasma dynamics of 

beams the set of relativistic Vlasov's equations for the 
distribution functions of particles  ( )f P R ts

 
, , ) in the 

axisymmetric  ( )∂ ∂ θ = 0  cylindrical  geometry 

( )
R r z= ,  has been used for the investigation of the 

transient  and  stationary  processes  in  linac  (here  

P  

momentum).  The  self-consistent  electric  ( )
E r z,  and 

magnetic  ( )
B r z,  fields  including  in  Vlasov's 

equations  are  determined by the  Maxwell's  equations, 
the right hands of which are defined as the zeroth and 
first moments of the distribution functions. From the set 
of  Vlasov's  equations  can  be  obtained  the  set  of  the 
dynamic  equations  for  the  particles.  The  Maxwell's 
equations  using  the  Lorentz  gauge 

( )div

A c t+ =− 1 0∂ ∂Φ  can be reduced to the wave 

equations for  the scalar  ( )Φ r z,  and vector  ( )
A r z,  

potentials.
The initial velocity of a given sort (s) of particles 

is  defined  by  the  boundary  conditions  for  the 
distribution  functions  at  z = 0 : 

( ) ( )f m u R t us s r
 
, , = δ ( ) ( )× −δ δ θu u uz s0  for 

r r rmin max≤ ≤  and  uz > 0 .  Here  rmin and  rmax  are 
the  minimum and maximum beams radii  respectively 
which  define  the  initial  r-coordinates  of  particles, 

u v vs s s0
21= − ,  vs  is  a  beam  velocity.  At  (

r = 0 ,  r rL= )  the  reflection  regime  is  set.  The 
particles exit free from the simulation region at z zL= . 
At  the initial time the particles are absent in modeling 
region.

The set of equations and the initial and boundary 
conditions for the potentials and distribution functions 
are described in detail in [15].

The configuration of the external magnetic field 
is defined by the expression  ( )A B k I krθ = − ×0 1  

( )× cos kz ,  where  ( )I kr1  is the first order modified 

Bessel function, B0  is the amplitude of magnetic field, 
and k K zL= π , K  is total number of cusps.

The discrete model, which is developed for the 
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 1999. №3.

Серия: Ядерно-физические исследования. (34), с. 77-78.
77



study  of  both  relativistic  and  nonrelativistic 
axisymmetric plasma configuration, is realized as 2.5-
dimensional  axisymmetric  numerical  code.  The 
calculations were carried out using Pentium-133.

Hollow  magnetized  relativistic  electron  beam 
(Larmor radius rLe  is substantially smaller than the size 
of the cusp  Lz  and the chamber radius  rL ) and high-
current unmagnetized ion beam (Larmor radius  rLi  is 
more greater Lz  and rL ) were injected along z-axis. In 
all  cases  the  beam  current  densities  were  equal  to 
q n V q n Ve e e i i i0 0= .  The  ion  beam  velocity  was 
Vi = 0 285. . The minimum and maximum beams radii 
were rmin =30 and rmax =37.5. The size of one cusp and 
radius  of  the  chamber  were  Lz =78.5  and  rL =157.5 
respectively.  The  amplitude  of  the  external  field  was 
B0 176= . .  The mass ratio was  mi/me=100,  me=20m0. 
The  number  of  particles  in  the  cell  was  N e = 64 , 
N i = 180 . The number of the nodes was equal to (Jz×

Jr)=(64×64). The time step was varied within the range 
0 025 0 05 1. .− −ω pe  for solving the equations of motion 

and  0 0125 0 025 1. .− −ω pe  when  solving  the  wave 
equations. The parameters of the electron and ion beams 
have  satisfied  the  condition  of  the  electron  beam 
transport  together the ion beam through the magneto-
insulated  accelerating  gap  ( ve = ÷08 085. . ).  The 
preliminary injection of the thermal electrons with the 
Maxwellian distribution function with the temperature 
Tce = 0 002.  into drift gap was used.

RESULTS OF SIMULATION
Further  (below)  the  results  of  three  cases 

distinguished by the potential difference across one cusp 
are discussed. The distributions presented in Fig.1 show 
that the applied external electric field, which accelerates 
ions and retards electrons, does not prevent the electron 
beam drift  through the accelerating gaps.  It  is  clearly 
seen  that  not  only  the  charge  but  also  the  current 
compensation  of  the  ion  beam  occur.  The  ion  beam 
generally  retains  monoenergetic  shape,  because  its 
spread in vz  and vr  does not exceed 10%.

Fig. 1. Distribution of the total charge density ρ(r,z), the 
scalar potential Φ(r,z) and the total axial current 
densities jz(r,z) at t pe= −440 1ω  for the case with 

additional electron injection into drift gap and thick-
wall ion beam.

More  optimal  relation  between  the  potential 
difference  ∆ Φ = 15 0.  and the electron beam energy 
was at the parameters ve = 085. , γ ≈ 19. . The kinetic 
energy of electron beam  ε eb ≈ 18 0.  was sufficient to 
overcome the potential difference. As a results the ion 

beam is accelerated and then its velocity is a constant in 
all  time of  simulation.  Fig.  1  illustrates  that  the self-
consistent field of the positive charge is suppressed, and 
an  additional  focusing  of  ion  beam  by  the  negative 
space charge of the thermal electrons occur also. As a 
result the better characteristics of the ion beam can be 
produced in linac.

The  preliminary  injection  of  the  thermal 
electrons into the drift gap upgrades the characteristics 
of HHCIB. At Fig. 2 the time dependences of the mean 
ion beam velocities for three cases are presented.

++++++++++++++++++++++++
+

∗∗∗
∗

∗
∗

∗
∗

∗∗∗∗∗∗∗∗∗
∗

1000.750.500.250.0.

0.25

0.3

<Vi>,(c)

t,(ω pe
-1)

Fig. 2. Distribution of the mean ion velocity <Vi(t)>: 
(*)  - without thermal injection into accelerating gap; 

(+) - with injection and without accelerating field; 
(◊) - with injection and accelerating field.

CONCLUSION
Results of the 2.5-dimensional numerical 

simulation of HHCIB dynamics in two magnet-isolated 
accelerating gaps separated by the drift gap are 
presented. With the aim of increasing the ion beam 
acceleration rate in the two cusps linac we have studied 
the optimal correlation between an accelerating electric 
field and an electron beam energy. We obtained the 
restriction on the wall thickness of annular HHCIB 
which ensure the following: (1) charge- and current 
compensation is homogeneous on the ion beam cross-
section; (2) a penetration depth of the accelerating 
electric field is considerably greater than the beam wall 
thickness.

This  work  was  partly  suppoted  by  State 
Foundation  for  Fundamental  Researches  (grant 
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