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     The examples are shown which demonstrate that in the course of analysis of linear systems the modes with 

dynamic chaos can occur. This can happen when for analysis of linear systems the change of variables is used 

resulting in the need to investigate either non-linear equations or non-linear functions. In the plasma physics field 

such situation may arise, e.g., when diagnosing some plasma parameters. 
     PACS: 05.45.-a 

 

INTRODUCTION 

 
At present time it is generally accepted that the 

regimes with dynamic chaos appear only in nonlinear 

systems. In general, this is correct. However, in some 

cases, when studying the linear systems one can run into 

the dynamics similar to the dynamics of modes with 

dynamic chaos. It may seem that this dynamic is not 

possible. In reality, in many cases such dynamic is quite 

natural. It can occur, for example, when for the analysis 

of linear systems the change of variables is necessary, 

and thus the initial linear system transforms to the one 

described by a system of nonlinear equations. The well-

known examples are the equations of classical 

mechanics and the equations of geometrical optics. 

Original for these equations are linear equations of 

quantum mechanics and Maxwell equations, 

respectively. 

In such a case, these new variables can lead to 

appearance of the modes with dynamic chaos. The 

change of variables modes to those with dynamic chaos 

can occur in linear systems if the processing of the 

results of the linear system dynamics is produced by 

non-linear characteristics. In our previous works (see, 

for example, [1-3]), we have illustrated the possibility 

for such regimes to be realized. 

This paper presents the results of further studies in 

this direction. Attention is drawn to the fact that there 

are two causes of dynamic chaos: (i) an immediate 

change of variables and (ii) the features of these non-

linear equations. The first reason apparently is 

nonphysical. As an example of the role of the second 

reason, the dynamics of waves propagating in layered 

dielectric was considered. The recurrence relations for 

the coefficients of reflection from and transmission 

through the layered media weкe found. Thus a non-

linear characteristic of the field was inserted. The 

conditions when this recurrent sequence becomes 

chaotic have been found too. 
 

1. REPLACEMENT LEADING TO THE 

CHAOTIC DYNAMICS 
 

A convenient characteristic allowing to determine 

such changes is a measure of "volume" x  in the phase 

space: ( )ip x x . Here ( )ip x  is a probability 

density for the studied dynamical system to get to point 

ix , that belongs to "volume" x . Let’s assume that 

substitution ( )iz f x
 
was done in such a way that z is 

an image and 
ix  is an inverse image of the point z . 

Principally, there can be many inverse images. The set 

of vectors ( )iz f x  do form a new phase space. 

 We consider in this space the "volume" z  

( / 2; / 2z z z z ). By definition, a measure of 

the magnitude of this volume will be: 

( ) ( )z i i

i

g z z p x x . Here the sum is carried 

out along the number of inverse images. Then the 

density of probability of the new phase space is 

determined by the formula: 

  
( )

( ) ( ) i i
i

i i

x p x
g z p x

z J
 ,                (1) 

where  det( / )J f x  is the Jacobian of 

transformation.   

Equation (1) is practically the Perron - Frobenius 

formula for transformation of probability density when 

converting the functions. Let’s consider, as an example, 

the high-usage and most important replacement. 

Suppose, that we have ,k k kx A A , where 

k k kA A iA . If one carries out the replacement: 

expk k k k kA A iA a i , then it is easy to verify 

that 1/J a . If in initial variables the motion was 

regular, then ( ) ~ ( ( ))i i ip x x x t . The density of 

probability for new variables become indeterminate 

( ( ) ?g z ) when 0a . It is useful to note that this 

transformation describes the transition from quantum 

consideration to classical consideration. In this case the 

condition 0a  may mean that the velocity of particles 

are going to zero. This fact corresponds to a well-known 

result that the transition from quantum to classical 

consideration for particles with zero speed is not 

correct. Using this simplest example, we will examine 

where this might lead to. Let the complex variables 

satisfy the following equations: 

x y ,    y x  .                                (2) 

Then there are two possible replacements. First 

R Ix x i x ,  
R Iy y i y . In this case, the new 
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dynamics does not arise. But the new dynamics occurs 

when another replacement is used, namely: 

0 2expx x i x ,
1 3expy x i x .  

Here ( ), 0,1,2,3,kx t k  are real functions. After 

substitution these replacement into (2) we will get the 

system of equations:  

0 1 cosx x    
1 0 cosx x  

 

0 1

1 0

sin
x x

x x
                    (3) 

 

with 
3 2x x  

      

 
Fig. 1. Time dependence of  

0x  

 

 
Fig. 2. Time dependence of phase

2x . One can 

see jumps of phase at the moments when 

amplitude don’t change sign when passing 

zero point 

 

     In addition, it follows from first two equations of the 

system (6) the existence of the integral: 2 2

0 1x x const . 

Taking into account this integral, the system of 

equations (3) has only one degree of freedom. As soon 

as it gets to the point, for example
0 0x , then the 

corresponding phase (
2x ) can be undefined. These 

features of the dynamics of the amplitude 
0x and phase 

2x are shown in Figs. 1-3. 

 
Fig. 3. Autocorrelation function for 

0x variable 

From Figs. 1, 2 we see that at random time moments 

the value of 
0x  does not change its sign and the value of 

phase undergoes a jump. Similar random phase jumps 

for 
3x are observed when

1 0x . 

Above we have considered the transformation 

occuring most frequently in physics, especially in 

radiophysics. In addition to this transformation, often is 

used the transformation that transforms the linear 

equation of second order to the Riccati equation, which 

is a first order nonlinear equation. It may be expected 

that the dynamics of such new variables can also be 

chaotic. We will show that the exchange, which led to 

the Riccati equation, is equivalent to the one used 

above. Indeed, suppose we have the 

equation 2 0x x . By the use of the 

replacement
0 /x x x  for the new variable this linear 

equation transforms into nonlinear Riccati equation: 
2 2

0 0x x  ,             (4) 

with the relation between initial variable and new 

variable as: 0

0

( ) exp( ( ) )

t

x t a x t dt  

If we present 
0( )x t  in the form 

0 ( ) ( )x i t i t , 
0Re x ,  

0( ) Imt x , 

then the expression for x(t) can be rewritten as: 

( ) ( ) exp( ( ))x t A t i t i t , where 

0

( ) exp

t

A t a dt ,  a const ,   
0

( ) ( )

t

t t dt . 

One can see that this expression is identical to the 

previous expression.  

 

 

2. TRANSMISSION OF 

ELECTROMAGNETIC WAVES THROUGH 

THE LAYER WITH LAYERED 

INHOMOGENEITY 

 
Now we shall consider the layered media, with 

layers arranged perpendicular to the axis z  with 

inhomogeneous medium occupying the 

region 0 z L . For simplicity, it is assumed that there 

are only two different periodically alternating layers. 

The dielectric constant of these layers and their 

thicknesses are equal
0 0 1 1, ; ,d d , respectively. 

We assume that from the left a homogeneous half-

space  ( 0z ) a flat monochromatic electromagnetic 

wave falls on a non-uniform layer. For simplicity, the 

wave is incident at right angle to the interface. The 

components of electric and magnetic fields of the wave 

obey the following equations: 

x
y

E
ikH

z
, ( )

y

x

H
ik z E

z
, 

2
2

2
( ) 0x

x

E
k z E

z
. (5)  

We are looking for reflectance and transmittance of 

the wave through an inhomogeneous layer with the 

fields in an arbitrary homogeneous layer having the 

form: 

( ) ( )x n n n nE A exp ik z B exp ik z ,                        (6) 

( ) ( )y n n n n nH A exp ik z B exp ik z , 

where k kn -    the refractive index of the layer.  
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We use the matrix method (see, e.g., [4, 5]) for 

determination of the transmission and reflection 

coefficients. Under this method, the fields at the left and 

right edges of the layer are connected with each other by 

the following matrix: 

x x

n

y y

E E
M

H H
, 

11 12

21 22

n

a a
M

a a
,                  (7) 

where 
11 22cos n na k d a ; 12 sin /n n na i k d ;  

21 sin n n na i k d ;    

 

 

The connection between fields at the left and right 

boundaries of the double layer will be determined by the 

following relation: 

1 0

x x

y y

E E
M M

H H
  .     (8)           

The elements of matrix 
11 12

0 1

21 22

A A
M M M

A A
 are 

easy to determine:        

1

11 0 0 1 1 0 0 1 1

0

cos cos sin sinA k d k d k d k d , 

0

22 0 0 1 1 0 0 1 1

1

cos cos sin sinA k d k d k d k d , 

12 0 0 1 1 0 0 1 1

1 0

cos sin sin cos
i i

A k d k d k d k d , 

12 1 0 0 1 1 0 0 0 1 1cos sin sin cosA i k d k d i k d k d . 

 

     If there are N such double layers, the relation 

between fields at the left  ( 0z )  and  right  ( z L ) 

boundaries will be expressed by the formula:  

x xN

y y

E E
M

H H
.                                            (9) 

In the general case the matrix NL M looks like a 

quite complicated one, and its elements could be found 

only by calculus of approximations. However, in some 

special cases the elements of the matrix can be strongly 

simplified, in particular, the elements become much 

simpler if the layers with identical optical thickness 

0 0 1 1k d k d kd , are under consideration.  

We should pay attention that the matrix 
nM is a 2х2 

matrix, which diagonal elements are real functions and 

nondiagonal elements are imaginary functions. The 

matrix M is of a similar structure. It is easy to show that 

similar structurewill also the transfer matrix, which 

links the fields at the outer boundaries of the 

inhomogeneous layer:  

11 12

21 22

N
l il

L M
il l

.                                       (10) 

These elements, after some transformations, can be 

expressed in terms of Chebyshev polynomials of the 

second kind: 

11 11 1 2( ) ( )N Nl A U s U s , 

22 22 1 2( ) ( )N Nl A U s U s ,  
12 12 1( )Nl A U s . 

 

Here 
11 22 / 2s A A ; ( )NU s - Chebyshev 

polynomials .  

Using elements of matrix L  it is easy to express 

transmission and reflection coefficients:  

 

11 22 12 21

2

( )N N

T
l l i l l

 ,                 (11) 

 

 

11 22 12 21

11 22 12 21

( )

( )

N N

N N

l l i l l
R

l l i l l
.                  (12) 

 

Expressions (11) and (12) can be analyzed by 

numerical methods. The most informative are energetic 

reflection coefficients and energetic transmission 

coefficient, which have been studied. 

It was shown that there is a range of parameters, 

where the dependence of these characteristics on the 

frequency of the incident radiation is irregular. Figs. 4-7 

show two typical cases. In the first case (see Figs. 4, 5) 

parameters of the inhomogeneous layers are chosen so 

that the dependence of the transmission coefficient on 

frequency is a regular function. 

In this case the correlation function oscillates 

without decreasing the amplitude of the oscillations. 

However, with increasing the number of layers, this 

dependence becomes irregular (see Figs. 6, 7), and the 

amplitude of the correlation function decreases rapidly.  

 

Fig .4. Energetic coefficient of the transmission 

(number of layers is 10). 
0 15, 2n n  

 
Fig. 5. Autocorrelation function (number of layers is 

10).  
0 15, 2n n  
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Fig. 6. Energetic coefficient of the 

transmission (number of layers is 80). 

0 15, 2n n  

 

Fig. 7. Correlation function   (number of layers 

is 80). 
0 15, 2n n  

 

 

 

CONCLUSIONS 
 

     Thus, the above presented results do additionally 

confirm the following main conclusions: when 

providing the study of linear systems, there is a high 

probability to encounter the dependences that are 

inherent in systems with dynamic chaos. This 

situation arises when for analysis of the dynamics of 

linear systems variables that are either themselves 

nonlinear, or obey to non-linear equations are used. 

In plasma physics, such a situation can be met, for 

example, in the diagnosis of plasma parameters. 
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РЕЖИМЫ С ДИНАМИЧЕСКИМ ХАОСОМ ПРИ АНАЛИЗЕ ДИНАМИКИ ЛИНЕЙНЫХ 

СИСТЕМ 

 

В.С. Антипов, В.А. Буц 

 

     Приведены примеры, которые показывают, что при анализе динамики линейных систем могут возникать 

режимы с динамическим хаосом. Это случается, когда для анализа линейных систем используются замены 

переменных, которые приводят к необходимости исследовать либо нелинейные уравнения, либо 

нелинейные функции. Для физики плазмы такая ситуация может возникнуть, например, при диагностике 

параметров плазмы. 

 

РЕЖИМИ З ДИНАМІЧНИМ ХАОСОМ ПРИ АНАЛІЗІ ДИНАМІКИ ЛІНІЙНИХ СИСТЕМ 

 

В.С. Антіпов, В.О. Буц 

 

     Наведено приклади, які показують, що при аналізі динаміки лінійних систем можуть виникати режими з 

динамічним хаосом. Це трапляється, коли для аналізу лінійних систем використовуються заміни змінних, 

які призводять до необхідності досліджувати, або нелінійні рівняння, або нелінійні функції. Для фізики 

плазми така ситуація може виникнути, наприклад, при діагностиці параметрів плазми. 

 

 

 

 


