
SYNCHROTRON RADIATION OF RELATIVISTIC ELECTRONS 
MOVING AT SMALL PITCH-ANGLES IN INHOMOGENEOUS 

MAGNETIC FIELD
Ya.M. Sobolev

Radio Astronomy Institute NASU, 61002 Kharkov, Ukraine
E-mail: sobolev@ira.kharkov.ua

Synchrotron radiation of relativistic electrons moving in an inhomogeneous magnetic field at small pitch-angles 
is considered. The trajectory of an ultrarelativistic electron is obtained taking into account a curvature and radial 
inhomogeneity of magnetic field lines. The general formulae describing the radiation of an electron moving at pitch-
angles from 0 to  π/2 are derived. The range of instantaneous characteristic frequencies appears instead a single 
characteristic frequency. The applicability of the formulae for runaway electrons in the tokamak is evaluated. The 
condition for using of the obtained formulae is derived.
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1. INTRODUCTION
The synchrotron radiation is widely used in various 

fields  of  science  and  engineering. However,  the 
formulae that  take into account curvature of magnetic 
force lines are only obtained recently.

The general  formulae  for  synchrotron  radiation of 
ultrarelativistic charged particles moving along a spiral 
trajectory  in  curved  magnetic  force  lines  were  firstly 
obtained in [1]. The radiation mechanism was called as 
synchrocurvature to  underline  that  the  curvature  of 
magnetic force lines was taken into account. In [2], the 
formulae were generalized to take into account drift in 
an inhomogeneous magnetic field. 

The radiation of relativistic electrons moving along a 
curved  spiral  trajectory  at  small  pitch-angles  was 
considered in [3,4]. The synchrotron radiation spectrum 
of runaway electrons in tokamak was obtained in [3]. 
The  spectral  angular  distribution,  spectrum  and 
polarization characteristics have been derived in [4]. It 
is  shown in [6]  that  the same radiation spectrum has 
been considered in [3] and in [4]. In limiting cases the 
formulae  [1-5]  turn  to  the  classical  synchrotron  and 
curvature radiation. 

The  particle  trajectory  has  been  taken  in  drift 
approximation  in  [1,2]. The  equations  of  motion  for 
charged particles in circular magnetic force lines have 
been  solved  in  [4,5]  to  derive  the  particle  trajectory 
more exactly. It turned out that there was the regime of 
motion when the pitch-angle and the curvature radius of 
the trajectory is varying while the particle rotates around 
magnetic  line. Consequently,  the  instantaneous 
characteristic frequency in given direction is  changed, 
and  we  have  the  range  of  characteristic  frequencies 
instead of a single characteristic frequency.

At  the  same time,  the  model  of  circular  magnetic 
force lines has been used in [4,5]. Such a field does not 
satisfy the Maxwell equations in vacuum. So necessary 
to  consider  the  general  radiation  mechanism  for  an 
relativistic  electron  moving  in  an  inhomogeneous 
magnetic  field,  with  the  corrections  caused  by  the 
magnetic  field gradient  and the pitch-angle variability 
taken into account. The curved magnetic field with non-
constant magnitude is considered in present paper. For 
this case the electron motion can be analysed by using 

the  more  precise  trajectory  than  the  drift  one. The 
general  trajectory  will  allow  generalizing  the  former 
radiation formulae  and  finding  out  the  limits  of  their 
applicability. In order to obtain a general expression for 
the  radiation  spectrum  Schwinger’s  formula  is  used. 
Using  this  formula  the  radiation  spectrum  of  the 
electron  in  the  inhomogeneous  magnetic  field  can  be 
obtained, once the curvature radius (or the acceleration) 
of the particle trajectory is known.

The  present  paper  is  organized  as  follows. The 
motion  of  relativistic  electrons  in  curved 
inhomogeneous magnetic fields is considered in Section 
2,  using  methods of  the  theory  of  nonlinear  systems. 
The trajectory position vector is expanded as a power 
series  in  small  parameter 1B < <= Rrε ,  where  Br  is 
the  Larmor radius,  R  is the magnetic force line. The 
radiation  mechanism  is  described  in  Section  3.  The 
validity criterion of the obtained formulae is discussed 
in  Section  4. The  solution  of  motion  equations  is 
outlined in Appendix.

2. TRAJECTORY OF A CHARGED 
PARTICLE

To  find  the  trajectory  of  a  charged  particle  the 
guiding center approach is used in [1,2]. The pitch-angle 
which defines as the angle between the particle velocity 
vector and the magnetic field vector is constant in such 
model. It is necessary to have more exact trajectory that 
the phenomenon of changing pitch-angles can  take into 
account.

Let  us  assume that  a  magnetic  field  has  lines  of 
force being curved with radius R , and the magnitude of 
magnetic  field  is  depends  on  the radial  coordinate. 
Suppose  that  Cartesian  (x,y)-coordinates  are  in  the 
osculating plane of the magnetic field lines, and z-axis 
coinciding with the axis of cylindrical magnetic surface. 
If  we  introduce  cylindrical  coordinates  ( zr ,ϕ, ),  the 
magnetic field vector can be expressed as

( )jiB ϕϕ cossin0 +−




=

r
RB ,           (1)

where φ is  the polar  angle  in  (x,y)-plane,  i, j  are the 
basis vectors of Cartesian frame. Here, in contrast to [1] 
and [4,5], the radial dependence of the magnetic field is 
included. (Also,  the  direction  of  the  magnetic  field 
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differs from adopted in [4,5] by replacement BB −→ .) 
The particle of charge  e , mass  m , velocity  v  and 

Lorentz-factor 1)/1( 2/122 > >−= −cvγ  moves  along 
curved spiral  trajectory in the magnetic field (1). The 
angular  velocity  Ω  corresponding  this  motion is 
defined as  Rv /||≡Ω ,  where ||v  is the  velocity of the 
guiding center along the magnetic line with curvature 
radius R. The radius of Larmor’s circle Br  is much less 
than R , 1B < <= Rrε .

The equations of motion of the charged particle in 
the  magnetic  field  (1)  are  solved  in  Appendix. The 
asymptotic  expansion  of  the  radial  component  of  the 
position  vector  ),( zr ,ϕr  of  trajectory,  in  which  the 
terms proportional to 1)/ 5

B < <R(r  are dropped, has the 
form 
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The  expressions  of  )ψ(4z  and  4α  are  given  in 
Appendix. These terms make possible to calculate with 
enough  accuracy  the  absolute  values  of  velocity  and 
acceleration, ϕ  and z  components can be found after 
expression (2) is substituted into Eqs (A2). It’s worse to 
mention that in (2) the assumption about small δ  is not 
made yet.
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The magnitude of the acceleration is
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The  corrections  of  the  first  order  (on  ε )  in 
comparison with the first and second terms have been 
remained in Equation (4). 

It  should  be  emphasized  that  Equation  (4)  differs 
from the corresponding expression obtained in [2]. They 
coincide only at small and large pitch-angles.

2.1. THE ANGLE BETWEEN PARTICLE’S 
VELOCITY AND MAGNETIC FIELD

It  was  shown  in  [5]  that  for  an  ultrarelativistic 
electron moving in a circular magnetic field there is the 
regime of motion, with varying pitch-angles. Let's show 
that this property is also saved for the motion within the 
magnetic field lines (1). The instantaneous characteristic 
frequency  in  every  given  direction  appears  as 
consequence  of  changing  curvature  of  the  particle 
trajectory.

The  components  of  the  particle  velocity  have  the 
form
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It  is  visible  from  expression  (5)  that  the  transversal 
velocity of guiding center is consisted of the centrifugal 
drift  velocity  and  the  drift  velocity  caused  by  the 
magnetic field gradient (underlined terms in (5)).

The  velocity  vector,  which  is  transverse  to  the 
magnetic field line, can be written as zr zr eev  +=⊥ . Its 
square is












 +−+Ω+

++Ω+Ω=

222

22
2
Β

4

⊥

ψδδ

ωψ
ω

2cos
3
2222

cos2

2

2
B

2
2

B

BB

r

rRrRv
        (6)

The angle between a velocity vector and magnetic 
field,  called  also  as  a  pitch-angle  α ,  is  defined  as 

||||tg ||v⊥= vα .
There  are  two  limiting  regimes  of  motion: i)  the 

value of transverse velocity is close to the speed of light 
cr →Β Bω ,  thus  1< <=Ω Β εδω BrR ,  and  ii)  the 

transverse velocity is no relativistic, and the longitudinal 
velocity  goes  to  the  speed  of  light  cR →Ω ,  so 

1> >=Ω Β εδω BrR . In  case  i),  the  ratio  of  Larmor 
velocity  to  the  velocity  of  centrifugal  drift  is 

1B > >=
Ω

≡ 2
Β

2
Β

δ
ε

ω
ω

R
rq ,  Brv Β⊥ ≈ ω  and  the  pitch-

angle α  is constant. In case ii), all terms are essential in 
upper line of Equation (6) ; this line can be written as

( )2
2

2 cos21 qqRv ++Ω= 2
Β

4

⊥ ψ
ω

.                (7)

As  is  seen  from  (7),  the  pitch-angle  changes 
periodically  at  εδ ~2  (or  1~q ). The  amplitude  of 
pitch-angle oscillations is δα ∼tg .

From here follows, that at δεδ <~2  the magnitude 
of pitch-angle is not saved. The curvature radius of the 
trajectory is also changes from point to point that results 
in appearance of a range of characteristic frequencies. 

At the same time, as it follows from (5), the angle 
Dα  between  the  velocity  vector  and  the  direction  of 

drift  trajectory  saves  constant  value  and  is  equal  to 
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δεωα == Β ||BDtg vr . Thus,  the  angle  under  which 
the particle trajectory is wound onto the drift trajectory 
has constant value. Possible,  the angle  Dα  should be 
used instead of a pitch-angle.

To calculate the acceleration components, Equations 
(5)  should be substituted into the right  hand sides  of 
Equations (A1).

3. RADIATION SPECTRUM
The total energy radiated per unit time  tP ddε=  

can be calculated from general expression [8] 
2
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where  it  have  been  taken  into  account  that  the 
acceleration and velocity vectors are perpendicular.

The  power  averaged  over  time  is  of  interest. 
Substituting  (4)  in  (8)  and  averaging  over  time,  we 
obtain 
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It can be seen that the total energy losses are consist of 
two  contributions  such  as  the  losses  owing  to 
acceleration  of  the  particle  moving  along  a  circular 
force  line,  and  the  losses  due  to  the  acceleration  at 
Larmor rotation around a magnetic force line. For small 
longitudinal velocities cR < <Ω  and even in the case of 
relativistic  longitudinal  velocities for  δεδ <<2  (this 
inequality is equivalent  1> >q  ), Equation (9) has the 
same form as the classical formula of power losses in a 
homogeneous magnetic field [8]
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For  2< < δε  (or  1< <q ) and  cv →|| , we obtain from 
(8) the formula of the curvature radiation power

2
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Let's  calculate  the  spectral  distribution  of  the 
radiation  emitted  by  an  electron  in  inhomogeneous 
magnetic  field. The  total  radiated  power  per  unit 
frequency emitted by a relativistic electron is given by 
expression [9]
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where )(tr and )(tv  are  the  position  and  velocity 
vectors of the electron at time t, given by Equations (2) 
and (5).

Using the Frenet  formulas of  the natural  trihedral, 
the next expressions can be obtained [6]
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||2 a=kv ,                           (15)
where  k  is the curvature of the trajectory (2), and the 
velocity  is  given  by  Equation  (5). To  obtain  the 
equations (13), (14) we have taken into account that the 
acceleration is perpendicular to velocity,  0=va .  Here, 
contrary to the trajectories used in [1,2], the curvature of 
trajectory (2) depends on time )(tkk = .

Using  (13),  (14),  the  radiation  spectrum  can  be 
represented in the form
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In comparison with [2, 6], equation (16) contains the 
refined  expressions  of  the  trajectory  curvature  and 
particle velocity. 

Introducing a  new variable  v/2kx τ γ= ,  using  the 
formula from [9]
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where )(3/5 xK denotes the MacDonald function of order 
5/3, Equation (16) can be expressed as 
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where  `3
2

kv
y 3=

γ
ω

.  (Another  method  for  a 

representation  of  the  radiation  spectrum  through  the 
Bessel  function  of  the  zeroth  order  )(0 xJ  and  its 
derivative )(0 xJ ′  has been developed in [3].) As cv ≈ , 
the  radiation  spectrum  is  entirely  determined  by  the 
instant  curvature  of  trajectory  or,  according  (15),  its 
acceleration  at  the  given  moment.  After  substituting 
Equation (4) in (17), we can transform Equation (17) in 
the form
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where ( ) ∫
∞

=
y

dxxKyyF )(3/5 .

The characteristic radiation frequency is
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B

2
B

2
B

4
B

2 cos2
2
3 ψωωγω rRrR

cC
24
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For 1> >/= 2δεq , from Equation (19) we have the 
synchrotron  characteristic  frequency 

2= γαω
mc

eB
2

sin3
synch ,  where  α  is the pitch-angle [9]. 

This characteristic frequency is maintained both in the 
case of nonrelativistic  εδ < <  and relativistic  εδ > >  
longitudinal  velocities  if  the  inequality  1> >q  is 
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fulfilled. In this case, from Equation (19) we obtain the 
spectral distribution of the synchrotron radiation [9]. For 

1< </= 2δεq ,  we obtain  the  characteristic  frequency 

R
c3= γω

2
3

curv  and  the  spectral  distribution  of  the 

curvature  radiation. In  the  limiting  cases,  the 
characteristic radiation frequency is constant. 

As  it  follows  from  Equation  (19),  for  1~q  the 
characteristic frequency is dependent on time. The band 
of  characteristic  frequencies  arises  instead  the  single 
characteristic frequency,
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2
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R
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R
c

C +<<− 33 γωγ .        (20)

It is interesting to have an averaged spectral power. 
For  this  purpose,  it  is  necessary  to  average  Equation 
(17) over the time period  ωπ2 ; however, neglecting 
the corrections 2~ ε  to the effective frequency ω , it is 
possible to put Β= ωω . Equation (17) is transformed to
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where Cy ωω=  .
The equation (21) has the same form as obtained in 

[5],  but  here  the  improved  expression  for  the 
acceleration of the electron enters. 

To  integrate  with  respect  to  tB || ω  in  (21),  we 
introduce  the  variable tqqz Bωcos21 2 ++=  and 
change the order of integration.  Then [6]
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2  is the total power emitted by a 

charged  particle  moving  with  velocity ||v  along  a 
circular  orbit  of  radius R,  Cy ωω /C =  

( ) ββγω /2/3C | |
3 Ω= .

Integrating  in  (22)  with  respect  to  frequency,  we 
obtain the total emitted power 
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It is visible that Eq. (23) coincides with Eq. (9). 
4. DISCUSSION

As it follows from the preceding consideration, the 
general formula of synchrotron radiation (22) should be 
used,  when  the  velocity  of  a  centrifugal  drift  is 
comparable to the velocity of Larmor gyration or 1~q . 

Let's  compare  the  obtained  formulae  for  the  total 

energy  losses  and  radiation  spectrum  with  the 
expressions from other papers. The expression for total 
power losses (9) coincides (to within small parameters) 
with  obtained  in  [4,5]  and  differs  from  the  relevant 
formula in [1,2]. The main difference arises in the field 
of parameters, in which the pitch-angle is variable. In 
this case, the velocity of centrifugal drift is comparable 
to the velocity of Larmor rotation 1~q .

In Fig.1 we present the comparison of the behavior 
of  the  total  energy  losses  as  a  function  of  the  ratio 

Rrvv Ω=⊥ // B|| Bω ,  obtained  from  equation  (9),  with 
the synchrotron and the curvature radiation mechanism. 
The magnitude of magnetic field, the curvature radius, 
and the energy of runaway electrons have been taken as 
in the tokamak TEXTOR [3]. From this figure we can 
notice  that  for  pitch-angles  110 −<α  the  using  of 
classical  synchrotron  radiation  mechanism  is  not 

sufficient. Thus, if the parameter 1~
|||| v

v
v

Rq ⊥Β= ω
, then 

for  description  of  the  radiation  of  ultrarelativistic 
electrons moving in inhomogeneous magnetic field we 
must take into account the curvature of magnetic lines.

10-3 10-2 10-1
10-9

10-8

10-7

10-6
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10-4

v
⊥

 / v||

P,
 e

rg
/s

Fig.1. Comparison of the total energy losses described 
by Equation (9)(solid curve) with the energy losses of  

the synchrotron radiation (dotted curve) and curvature 
radiation (dashed curve) for 4102 ⋅=B G, 5 0=γ , 

175=R  cm
The spectral distribution of the radiation is given by 

Equation (22). In Fig.2, the spectral distribution of the 
total radiation intensity  ωdd P  for an ultrarelativistic 
electron  moving  in  a  curved  magnetic  field  is 
represented as a function of the frequency  ω ,  for the 
synchrotron radiation with effective Larmor radius and 
for  the  synchrocurvature  radiation  of  [2].  The  solid 
curve is described by Equation (22), the dashed curve 
corresponds  to  [2,  eq. (23)].  The  difference  between 
these curves is due to that in [2] the trajectory of particle 
has constant radius of curvature )1( qR +≈ , whereas the 
curvature radius of trajectory (5) changes from |1| qR −  
up to  )1( qR + , and the spectrum (22) is  obtained by 
averaging the contributions in radiation from different 
points of the trajectory. The dotted curve represents the 
spectrum  of  the  classical  synchrotron  radiation  of  a 
relativistic  electron  in  a  circle  trajectory  with  radius 

21 qR + . Such synchrotron radiation has also the total 
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radiation power (9). The values 410~B , 1 0 0∼γ  and 
2.1=q  have been taken.

10-5 10-4 10-3 10-2 10-1 100 101
10-22

10-21

10-20

10-19

ω /ω C

dP
/d

ω

Fig.2. The spectrum of the radiation emitted by a 
relativistic electron moving in a curved inhomogeneous 

magnetic field (solid curve, Eq.(22)), of the 
synchrocurvature mechanism [2] (dashed curve) and of  

the effective synchrotron radiation (dotted curve)

Thus, the trajectory of an ultrarelativistic electron in 
a curved inhomogeneous magnetic field is obtained. The 
total power and the spectral distribution of the radiation 
emitted by the relativistic charged particle in the curved 
magnetic field have been derived, using this trajectory. 
The obtained formulae in the lowest order of smallness 
coincide with the formulae obtained earlier in [4,5] for a 
circular  magnetic  force  line. It  is  natural,  as  the 
synchrotron radiation in the given direction goes from a 
small  segment of the trajectory,  which with sufficient 
accuracy  can  be  approximated  by  an  incircle. The 
account of a radial inhomogeneity of the magnetic field 
has  allowed  to  find  limits  of  applicability  of 
synchrocurvature radiation mechanism.

The criterion of necessity to take into account the 
curvature of magnetic lines is found out. The application 
of this criterion for the tokamak TEXTOR shows that it 
is easily fulfilled. 

Thus, the curvature of a magnetic force line needs to 
be  taken  into  account,  when  parameter 

1~B Rrq 22
Β Ω= ω . These conditions are easily realized 

both  in  the  cosmic  space  and  in  the  experimental 
machines. 

5. APPENDIX
The equations of particle motion in magnetic field 

(1) have the form

z
r
Rrr  Β−=+ ωϕ , 02 =+ ϕϕ  rr , r

r
Rz  Β= ω ,   (A1)

where 
mc

eB
γ

ω 0=Β is the cyclotron frequency.

The system of  Equations  (A1) has  two integrals 
which correspond to a generalized angular momentum 
and generalized momentum along z,

Mr =ϕ2 , ZV
R
rRz =





− Β lnω ,          (A2)

where M  and ZV  are the constants of integration.

Substituting  (A2)  into  (A1),  assigning  2RM Ω≡ , 
introducing new variable ( )xRr ε+= 1 . 
and expanding the obtained expression into powers of 

1< <= RrBε , we obtain the equation
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2423

2222
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δεδε

δεδεω

,     (A3)

where 22
Β

2
0 Ω+= 2ωω , 0Ω= ωδ . It should be pointed 

out  that  the  frequency  0ω  differs  from  the 
corresponding  frequency  in  [4]  by  the  factor  at  2Ω . 
This difference is caused by the radial inhomogeneity of 
the magnetic field (1). The equation (A3) can be solved 
by the method offered in [6]. Assume that the solution 
of Equation (A3) has the form

)(ψzx = , θωψ += t                   (A4)
After  substituting  (A4)  into  Equation  (A3)  and 

expanding the solution in a power series

∑
∞

=
=

0
)(

n
n

n zz ψε , ∑
∞

=
=

0

2

n
n

nαεω ,

Equation (A3) can be written as a system of equations 
with unknown functions )ψ(nz  [6]; solving this system 
(with initial  conditions  B)0( rr = , 0)0( =r ,  / 2= πϕ )0(  

0)0( =z ,  constVM Z =, ),  we  find  out  the  above 
mentioned expressions (2), (5). 

Where 
Β

2Ω=≡
ω

RvV DZ  is the velocity of centrifugal 

drift

ψδδδ

ψδδδ

δδδ
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СИНХРОТРОННОЕ ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ, ДВИЖУЩИХСЯ ПОД 
МАЛЫМИ ПИТЧ-УГЛАМИ В НЕОДНОРОДНОМ МАГНИТНОМ ПОЛЕ

Я.M. Соболев
Рассмотрено  синхротронное  излучение  релятивистских  электронов,  движущихся  под  малыми  питч-

углами в неоднородном магнитном поле. Траектория ультрарелятивистского электрона получена с учетом 
кривизны и радиальной неоднородности линий магнитного поля. Выведены общие формулы, описывающие 
излучение электрона,  движущегося  при питч-углах  от 0 до  π/2.  Вместо отдельной характерной частоты 
возникает область характеристических частот. Оценена применимость формул для убегающих электронов в 
токамаке. Выведены условия для использования полученных формул.

СІНХРОТРОННЕ ВИПРОМІНЮВАННЯ РЕЛЯТИВІСТСЬКИХ ЕЛЕКТРОНІВ, ЩО 
РУХАЮТЬСЯ ПІД МАЛИМИ ПІТЧ-КУТАМИ У НЕОДНОРІДНОМУ МАГНІТНОМУ ПОЛІ

Я.M. Соболєв
Розглянуте синхротронне випромінювання релятивістських електронів, що рухаються під малими пітч-

кутами  у  неоднорідному  магнітному  полі.  Траєкторія  ультрарелятивістського  електрона  отримана  з 
урахуванням кривизни і радіальної неоднорідності ліній магнітного поля. Виведені загальні формули, які 
описують випромінювання електрона, що рухається при пітч-кутах від 0 до π/2. Замість окремої характерної 
частоти виникає область характеристичних частот. Проведена оцінка застосовності формул для збігаючих 
електронів у токамаці. Виведені умови для застосування отриманих формул.
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