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1. INTRODUCTION
In this paper the three basic characteristics of the in-

stability near threshold supported by external source in 
absorbing  medium  with  cubic  nonlinearity  are  dis-
cussed.

1. First of all, most if not all of types of interaction 
between modes (except a few types) of the perturbation 
spectrum is negligible [1-2]. An integral action on the 
pump by the perturbation spectrum is substantial  to a 
great extent. Therefore a linear stage of the instability 
transforms  to  the  so-called  quasilinear  stage.  At  that 
stage  of  instability  process  the  integrated  intensity  of 
perturbation spectrum independently of its width. That 
intensity reaches (but not exceeds) some threshold level. 
From this moment the rate of change of their amplitudes 
(but not phases) becomes abruptly slower [3]. Decelera-
tion is  a  result  of  depumping.  The depumping occurs 
due to an integral action of the perturbation spectrum on 
pump. Hence the life time of the instability process is 
hundred or thousand times greater then a value of the in-
verse increment of linear theory. Under existing condi-
tions the phases of perturbation spectrum modes locked 
by pump are able to form forced interference splashes, 
induced by pump. Incidentally, the noise level reduction 
[4]  leads  to  a  subsidiary  deceleration  of  quasilinear 
stage of the instability in media with and without wave 
motion [3,5].

The  behavior  of  the  separate  mode  of  spectrum 
)( nn kaa =  near  the  instability  threshold can be  de-

scribed by the reductive equation
nmmnnLn aaakdtda 2||2])([/ ∑−⋅−= δγ ,         (1)

and  at  the  same  time LMAXnL k γγ ≤)( .  The  quasilinear 
stage of  instability starts  with the achievement of  the 
threshold intensity independently of the spectrum width: 

][)||2( 2
0 δγ −∝≈∑ ≠ LMAXTHRmm Da ,      (2)

Where  2||2)( ∑−−= mmnLNL ak δγγ  is  a  nonlinear 
increment,  D is a level of an imperfection, which is a 
small parameter as well. At the quasilinear stage strong 
inequality  δγγ −< < LNL ||  determines anomalous retar-
dation of the instability process. 

2. In the second place a slow change of the ampli-
tudes of the unstable modes coupled up relatively fast 
behavior  of  the  phases.  The  phase  motion  is  able  to 
form the interference splash or fine structure of the per-
turbation, induced by pump. This effect of the induced 
interference  at  the  quasilinear  stage  of  instability  ap-
pears from the forced-phase locking by pump. Average 

amplitude of  N-modes of the perturbation spectrum is 
NDaan /0∝ and the wave amplitude in the area of 

the  interference  splash  is  able  to  reach  a  value 
NDa ⋅0 . In case of 1< <D  and 1> >N  the amplitude 

of the modulated wave in the area of the interference 
splash is a few times greater than such amplitude in am-
bient space [6,7].

3. Thirdly, on the quasilinear stage of instability the 
pumping intensity is slowly decreasing. The peripheral 
parts  of  the  perturbation  spectrum  are  putting  down. 
Though some modes of the central parts of that spec-
trum keep slowly growing. Finally that process results 
in abnormal bandwidth narrowing of the instability and 
formation of the line spectrum of the mature structures 
[1,2]. 

In most cases near threshold of instability the quasi-
linear operation is realized and coupled with effect of 
induced interference. This mechanism is responsible for 
formation of the fine structure of the laser pulses and for 
formation of amplitude splashes as a result of the modu-
lation instability of the finite amplitude wave [6,7]. Ef-
fect  of  induced  interference  will  becomes  apparent 
when development delay of  instabilities takes a place. It 
is possible only near threshold of instabilities.

2. STRUCTURAL TRANSITION 
IN CONVECTIVE INSTABILITY

Let us discuss the process of convective selection in 
the framework of the weakly nonlinear theory. To keep 
the  computations  simple,  we  shall  work  with  the 
Proctor-Sivashinsky  model  [8,9]  supplemented  by 
external forcing 

( ) f22222

3
1)1( ε+ΦΦ∇∇+Φ∇−−Φε=Φ ,    (3)

where the Rayleigh number Ra is close to the critical 
value Rac corresponding to the onset of convective flow 

)1(RaRa ε+= c .
This  equation  describes  the  two-dimensional 

temperature  field  Φ  in  the  horizontal  plane  (x,y) 
generated  by  the  thermal  convection  in  a  layer  of 
Boussinesq fluid between poorly conducting horizontal 
planes. For 1< <ε , the solution of the unforced equation 
(1) is given by the mode combination

∑ε=Φ
j

jj rkia )exp(


               (4)

with  1|| =jk


.  The  amplitude  equations  governing  the 
slow evolution  of  the  amplitudes  aj (on  the  temporal 
scale extended by the factor 2−ε ) have the form [10].
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Fig.1. Convective structures corresponding to the 
quasi-stable rolls (a) and stable cells (b)

Coupling factors have the form 

1=jjV , ( ) ( )Θ+=




 − 22

cos21322132= jiij kkV


,  (6)

where Θ  is the angle between the vectors ik


 and jk


.
As a rule, in the beginning the simplest structure – 

convective rolls will appear in the system (Fig.1,a). In 
this  case  the  amplitude  of  the  mode  a1 considerably 
exceeds the amplitudes of other modes.

The state with  N  =1 does not appear generally.  In 
real  systems  at  first  the  short-lifetime  structure  is 
formed – imperfect rolls, which are weakly modulated 
in direction of their orientation. This structure connects 
the  mode  )0(1 =Θ= aa  with  comparatively  large 
amplitude and the narrow spectrum of modes with small 
intensity, which is located close to 2π=Θ . Determine 
the intensity of this spectrum as 

∑
π≠Θ

Θ=
2

2 )(
i

iaA ,                             (7)

where the central mode  )2(2 π=Θ= aa  is excluded 
from the sum. It may be shown that the narrowing of the 
spectrum in a vicinity of 2π=Θ  occurs. 

The  set  of  equations  approximating  the  above-
described  behavior  of  the  system  (when  one  of  the 
modes (a1) turned out to be sufficiently large) may be 
written in the form 





 −−−= Aaaaa

3
2

3
212 2

2
2
1

2
1

2
1 ,             (8)
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2
2 ,              (9)
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 −−−≈ AaaAA 22

3
212 2

2
2
1

 .           (10)

Let us assume that the central mode of the spectrum 
)2(2 π=Θ= aa  is insignificant and consider that the 

growth of the primary mode )0(1 =Θ= aa  is slowing 
down.  Than  we  obtain  143→A ,  762

1 →a .  Subse-

quently the behavior of the spectrum A and the central 
mode a2  may be described by the equations 






 −−=′ YXYY

5
141 ,                            (11)

( )YXXX −−=′ 1 ,                                (12)
where  314AY = ,  35 2

2aX = ,  τ≡′ ddXX ,  t5.1=τ , 

besides  determine  35 2
1aZ = ,  which  fulfills  the 

following expression:

YXZ
21
5

3
2

3
5 −−= .                    (13)

The intensity  of  the  structure  ∑=
j jaI 2

 may be 

written in the form

[ ]45
5
3 YZXI ++=  .                    (14)

Note  that  each  state  has  it's  own  value  of  the 
structure intensity. The perfect structures – convective 
rolls  and cells  (i.e.  perpendicular oriented rolls),  have 
the  intensity  equal  to  1  and  56  respectively.  The 
intermediate  state  with  short  lifetime –  the  imperfect 
rolls, has the structure intensity 15/14. Fig.2,a shows the 
evolution of the system, governed by Eqs. (8)-(10). It is 
easy to see the formation of the intermediate state – the 
imperfect  convective  rolls  with  structural  intensity 

15/14I ≈  ( 27.1)0( =Y ).
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Fig.2. a) Dynamics of the system, calculated by 
Eqs. (9)-(10); b) the direct solution of Eq. (3) 

with initial conditions , , where i
max

= N =50, the 
spontaneous external noise 



Eventually this intermediate state is broken and the 
perfect  structure  –  regular  cells  is  formed  (Fig.1,b). 
Direct  solution  of  Eq. (3)  with  initial  conditions 

2.0)0(1 ==ta ,  05.0)0(1 ==≠ tai  (taking  into 
consideration spontaneous external noise  3.0|| max ≈f ) 
are  shown  in  Fig.2,b,  where  the  curves  1,  2,  3 
correspond to the functions, defined after Eqs. (8)-(10). 
There is correspondence of the solution of the general 
Eqs. (3) and the solution of the modeling Eqs. (8)-(10).

Fig.3. Model of the mode competition in convection
Thus,  the  primary  instability  causes  the  short-

lifetime structure – the imperfect convective rolls. When 
the main mode amplitude a1 is close to the critical value 

761 =cra  and the spectrum intensity A becomes less 

than  the  threshold  value  143=thrA ,  the  secondary 
instability arises and the central mode of the spectrum a2 

begins  grow.  The  perfect  structure  –  regular  cells, 
appears as a result of this secondary instability. In that 
case  the  nonlinearity  forms  development  delay  of 
instabilities  and  the  spectrum with  trapped  modes.  A 
mode competition (Fig.3) results the slow changed two-
dimensional spatial fine structure of the convection with 
great life time.

In the presence of an external noise or due to other 
reasons, which support the fluctuation in the system the 
structural rearrangement may take place. The noise level 
reduction  leads  to  a  subsidiary  deceleration  of  the 
instability. 
3. MODULATION INSTABILITY OF THE FI-

NITE AMPLITUDE WAVE NEAR 
THRESHOLD

Let us assume that Lighhill equation [10] is correctly 
for slowly variable complex amplitude of the wave per-
turbation and it describes a nonlinear wave propagation 

gAiA
x

AiA
t
A +−

∂
∂−−=

∂
∂ 2

2

2
||δ         (15)

where δ  is a decrement of oscillation damping, g is an 
external  source,  which  supports  the  finite  amplitude 
monochromatic wave A with the wavenumber 0kk = . 
The variables xt, are the normalized time and coordi-
nate,  correspondingly.  Let  a  main  mode  be 

}exp{ 000 xikiu −ϕ , where 00 00 , kkAu ϕϕ == is an am-
plitude and a phase of the wave. The main mode is a 
pump wave for the spectrum of the instable modes.  The 
spectrum of oscillation }exp{ xikiu nnn −ϕ  is excited as 
a result of instability. This oscillation is connected with 
the main mode by the spatial  synchronism conditions 

nn kkk −+=02 ,  where  nn Kkk ±=± 0 ,  (
00 kKK nn < <=< − ). 

Let  us note that  the wave numbers of  the instable 
modes  are  symmetrically  distributed  relatively  to  a 
wave number of the main mode. The amplitude of the 
main mode in these conditions is determined from the 
equation 

}21/{1
0

2
0 m

N

m
m Sinuu Φ+= ∑

>δ .         (16)

The summation here and below is carried out only 
with  the  positive  indexes  Nnm ,...2,1, = ,  and 

nnn −−−=Φ ϕϕϕ 02 is a phase of n-th channel of instabil-
ity.  Here  0Φ is  not  in  existence  and  nn −Φ=Φ , 

nn uu −= [1]. Let us assume for simplicity  g=δ . The 
requirement of closeness to threshold of instability leads 
to the small parameter 

∑
>

=
N

m
mu

u
D

0

2
2
0

2
,                   (17)

which at the same time define an imperfection D of the 
growing spatial  structure  [3].  The  initial  value  of  the 
phase of the main wave (n = 0)  equals  to  zero.  This 
phase is described by following equation

m

N

m
m

N

m
m Cosuuuk

dt
d

Φ−−−+= ∑∑
>> 0

2

0

22
0

2
0

0 24
ϕ

  (18)

A change of the amplitudes of the growing modes is 
defined by equations

}{ 2
0 nn

n Sinuu
dt

du Φ+−= δ .         (19)

It is obvious, that reversal of the sign of n  doesn’t 
change the equations. The phases of the modes depend 
on sign of n.

nn

N

m
mn

n Cosuuuuk
dt

d Φ−−+−= ∑
>

2
0

2

0

22
0

2 )
2
12(2ϕ

  (20)

For calculation it is necessary to know, how the n-th 
channel phase of instability is changing.

)2(2

)(2

0

22
0

22
0

m

N

m
mn

nn
n

CosuCosu

uu
dt

d

Φ−Φ

+−+∆=Φ

∑
>

,    (21)

where  222
02 nnn kkk −−−=∆ .  It  is  easy  to  see,  that 

22 nn K−=∆ .
First of all let us note that for realization of the insta-

bility it is necessary at least that the phase of each n-th 
channel  of  instability  nΦ  fast  possesses  the  defined 
value n

*Φ .  The  phase  of  n-th  channel  of  instability 
practically  doesn’t  change and  exponential  growth  of 
amplitude  nu is beginning. Linear increment of insta-
bility is equal to 

2/)4(Im 2/12
0

2 unn ∆−∆−+−= δω .     (22)
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Fig.4. Increment of modulation instability Imω as a 
function of wavenumber k for 0≠δ . 1.- t =0; 2.- t >0

If  2
02un −=∆ ,  then  increment  reaches  a  maximum 

value which equals to )1( δ− , where 10 << δ . The in-
terval of instability in the wave-vector space (Fig.4) is 
determined by the requirement  0Im >ω  and is speci-
fied  by  the  following  inequality 

)11(2)11(2 22 δδ −−−<∆<−+− n .  The set  of  equa-
tions (16), (19), (21) describes the modulation instabili-
ty  in  case  of  the  small  exceeding  of  the  instability 
threshold (i.e. if 11 < <− δ ). At the same time the phases 
are  located  in  a  neighbourhood  of  n

*Φ ,  which  are 
slowly  changing  when   the  perturbation  amplitudes 
grow up and the pump level is reduced. The equation 
(25) and (27) allow to receive information about the be-
havior of phase of separate interactive modes.

For  clarification  of  a  character  of  growing  spatial 
modulation of the main wave let examine an approxima-
tion theory, when the changes of phases nn

*Φ=Φ  are 
neglected. In that case one may use a small parameter 
(6)  in  order  to  receive  the  following  expression  for 

nn SinCos ΦΦ ,
2
0

22
0 2/)](2[ uuuCos nnn −+∆−=Φ ;           (23)

2
0

2/12
0

2 2/)4( uuSin nnn ∆−∆−=Φ .
This expression of the trigonometrical functions al-

low to find the equations for an amplitude

}21{
0

2
0 ∑

>

−≈
N

m
muu

δ
,                  (24)

and a phase main mode 

∑
>

−−≈
N

m
muuk

dt
d

0

22
0

2
0

0 4ϕ ,           (25)

For amplitude and phase of the growing modes the 
following equations are valid 

}4)4(
2
1{

0

22/12 ∑
>

−∆−∆−+−=
N

m
mnnn

n uu
dt

du
δ

δ ;  (26)

2
||

||
24 0

0

22
0

2
0

n
N

m
m

n k
n
nuuk

dt
d ∆

+−−= ∑
>

ϕ
.  (27)

The expression for modulated wave in the conditions 
of developed instability in that approximation is repre-
sented in the form 

}]2/)({)}2/exp{

[)}(exp{),(

00
0

000

mm

N

m
mmm KCosiu

utixiktxE

−
>

−−Φ+

+⋅+−=

∑ ϕϕξ

ϕ
, (28)

where  )0(),0( 00 ==== −− tt mmmm ϕϕϕϕ  − initial 
phases of the modes, tkx 02−=ξ . 

Thus a second item in (28), i.e. a modulation of the 
main wave,  represents  a  sum of periodic  perturbation 
with  a  wave-length  equal  to  2/1)/2(2/2 nnK ∆= ππ , 
which is in  2/12

00 |)|/2(/ nn kKk ∆=  times greater then a 
length of the main mode. It is important that in this ap-
proximation all perturbations don’t shift one relatively 
another.

Modes with the wave numbers 2/0 Nn Kkk +=  and 
2/0 Nn Kkk −=−  offers the largest linear increment. On 

instability development the pump level decrease, effec-
tive  increments  of  the  rest  of  modes  decrease  and 
change into decrements. All that processes follow from 
the equations (16)-(27). Thus, the mode competition due 
to mechanism of “pump depletion” results in the band-
width reduction of developed instability.

The slow change of channel phase (i.e. 0/ ≠Φ dtd n

) account for slow relative motion of perturbation with 
different wave-length (see the second item of (28)). Let 
us examine the process of splash formation of modulat-
ed wave amplitude. It follows from equation (19) that 
exponential growth of the amplitudes of instability spec-
trum stops when a second item of equation is approach-
ing zero. A1so D(δ ) is some value, more less than unit. 
At  that  moment  the  modulated  wave  (28)  is  formed. 
Modulated wave is composed of the main mode and a 
set of long-wave perturbations, which slowly shift one 
relatively  another.  A  rate  of  instability  evolution  be-
comes  slower  sharply  and  the  modes  in  the  outlying 
parts of spectrum, which are long-wave and short-wave 
parts of spectrum, decrease their own amplitudes. The 
modes from a band center are slowly increasing. The in-
stability spectrum gradually converges.

It is important to note that at a quasilinear stage of 
instability with decreasing number of modes N or spec-
trum width  K∆  the equation  (18) practically  doesn’t 
change. An average value of the mode amplitudes of in-
stability spectrum rises. In case of discrete spectrum the 
expressions  2 DuN av ≈⋅ )( 2  and  2/12 )2/()( NDuu av ∝=  
are  valid.  In  certain  spatial  domain  will  be  formed a 
splash  of  modulated  wave  with  an  amplitude 

2/DNuN ⋅∝⋅ .  Is  it  possible  to  estimate  a  time  of 
splash formationτ  as  

])/()//[(4 minmax dtddtd Φ−Φ∝ πτ .         (29)
To imagine the pattern of splash, one may use an ap-

proximation at the beginning of quasilinear stage of in-
stability

}
)(

2exp{2 2/

1

2

K
KK

N
DdK

K
Nu N

N

m
m ∆

−
−⋅

∆
= ∫∑

=
,        (30)

where 2/NK is a central mode of modulation spectrum, 
K∆  is  a  spectrum width, NKK /∆∝δ  is  a  spectral 

width  of  a  single  mode.  The  expression  (20)  corre-
sponds to an equality DuN av =⋅ )(2 2 . In the presence 
of induced interference the amplitude of modulation is 
given by

1)(
)(

)(

)/||exp()/()/(

22
2/

2/
2/1

+⋅∆
⋅

⋅∆⋅=⋅×

×∆−−∆ ∫

xK
xKSin

KDdKxKSin

KKKNDKN

N

N

.(31)

k
0

Imω1

2

k
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For  modulation  instability  even  under  the  small 
threshold crossing, the spectrum width K∆  is insignifi-
cantly smaller then the wavenumber of a rapidly grow-
ing modulation 2/NK . The most intensive splash is ob-
served  on  a  spatial  interval  2//1/1 NKKx ∝∆∝∆ , 
which is visibly less, then an average length of modula-
tion  2//2 NKπ  (Fig.5). The amplitude of a modulation 
splash is proportional to  )/( KKDND δ∆⋅∝⋅ , i.e. it is 
proportional to the square root of the ratio of spectrum 
width to the spectral width of a single mode. The value 
of  imperfection level  D,  the value  of  spectrum width 

K∆  (or the number of modes N) and the value of the 
amplitude of a modulation splash have the greater, if the 
level of energy absorption decreases. 

During the instability evolution the spectrum width 
K∆  and the amplitude of a forced interference modula-

tion splash (21) decrease.
Let discuss now the behavior of modulated wave in 

the neighborhood of the modulation splash. Spatial in-
terval,  where the amplitude of  modulation is  large,  is 

02/ /10/1/1 kKK N ∝∝∆  if 2/0 10 NKk ∝ , i.e. that inter-
val is wider then a wave-length of the main mode. In the 
domain  of  modulation  splash  there  are  a  few  wave-
length of the main mode, if  2/0 20 NKk ∝ .  When the 
system comes  to  continuous  spectrum of  instability  (

0→Kδ , ∞→N )  a  forced  interference  modulation 
splash will be infrequent one, but with the significant 
amplitude. Thus the phenomena of forced interference 
of instability spectrum modes causes an appearance of 
anomalous splash of the fine structure of  perturbation 
amplitude at early stage of nonlinear rate of instability.

Fig.5. The wave amplitude behavior in the neighbor-
hood of modulation splash under following conditions:  

D = 0.7, a variation interval of x is equal to 31.4, a  
wave vector of the main mode ,100 =k  a wave vector of  
the central mode of modulation spectrum 12/ =NK , a 

spectrum width of modulation K∆ = 0,8. The white line 
in the picture corresponds to the envelope of modula-
tion spectrum or, in other words, to the second item in 

(17)
Frequency  of  splash  appearance  is  determined  by 

difference  of  phase  velocity  of  modes.  These  modes 
form the wave modulation. The amplitude of splash de-
pends on the number of modes or on phase spectral con-
centration in the instability spectrum (see Fig.5).

From the equations (16)-(27) one finds that an am-
plitude of the main mode changes from the initial  value 

1)0(0 ==tu  to δ . At the same time the modes of unsta-
ble spectrum at first increase, then after the sign reversal 
of second term of equation (19) (see also (26)) decrease 
their’s  amplitudes.  Finally  only  two  modes  remain, 
where  the  wavenumbers  are  near  *0 nKk + ,  *0 nKk −  
(where  δ≈*nK )  and  amplitudes  are  equal  to 

2/)1(* δδ −∝nu .
In  nonlinear  systems the phase  locking causes  the 

regulation and stabilization of a phase position in well-
defined reference frame (at the expense of attractors ap-
pearance and static stabilization). In case of the quasi-
linear operation the phase locking means somewhat dif-
ferent. This is so indeed, only relative phase velocities 
are given by the pump, which determines in that way 
the phase dynamics of unstable modes (that is well-or-
dered dynamics, without statical stabilization).

4. THE FINE STRUCTURE OF A LASER 
PULSE

We  consider  this  phenomena  using,  the  operating 
regime of a laser. In one-dimentional case, the nonlinear 
set of equations, describing the excitation of laser radia-
tion slightly above the generation threshold, can be writ-
ten in the form

,'/ nnnnn ipeiedtde −=∆−+ κ

nnn eipdtdp µ=Γ+/ ,

∑ ∗−−Γ=
n

nn pedtd Im)1(/ 0 µµ ,          (32)

where nn pe ,  − the dimensionless electric field and po-
larization,  µ  − relative dimensionless inverse popula-
tion rate in two-state active medium, κ,,0 ΓΓ  − inverse 
time of  the  relaxation  of  the  inverse  population,  line 
width, rate of losses in the resonator chamber, normal-
ized to the maximum growth rate MAX)(Imω  in the ab-
sence of any losses ( 0=κ ). Taking account of the loss-
es, the maximum value of the growth rate of an instabil-
ity exciting radiation electromagnetic waves correspond 
to the detuning value ( 0=∆ n ) is equal to

)}(])(4{[
2
1Im/Im 2/12

0max Γ+−Γ−+= κκµωω . (33)

We also neglect below any spatial perturbations of 
the population inversion µµ < <−1 . 

On  condition  slightly  above  the  threshold 
κω ,Im Γ< <  the equations  are changing

n
m

mnn AAddA ]1[/ 22 ∑−Λ−=τ ,                (34)

]1[/ 221
nnn dd Λ−Λ−= − δδτα ,                  (35)

where  }exp{ τα nnn AE = , 1)1)(( −−ΓΓ+−= κκτ t , 
21

0
2 ||))(/(|| nn Ee =Γ+Γ −κκ , 

1122 )()1)(1( −− Γ+−ΓΓ−= κκδ , 
11222 )1())(1(' −− Γ−Γ++Γ∆=Λ κκnn .

___________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 5.
Серия: Плазменная электроника и новые методы ускорения (5), с.63-68.
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Fig.6. Model of the mode competition for laser pulse 
formation

In  environment  of  slow  amplitude  change  inthe 
spectrum of instability many modes (Fig.6) with compa-
rable intensity remain. There is more than enough time 
for the phases to form quasiperiodical fine structure of a 
laser pulse is show in Fig.7. The phase velocity of each 
mode is practically proportional detune value n∆ . 

)(xA

         0                                                    100  τ
Fig.7. The amplitude pulse development at change τ  

from 0 to 100, number of modes is N=50, 35,0=δ

The  paired  modes  with  || n± support  periodical 
modulation of radiation with period nΛ∝ /2π . The su-

perposition of such modulations forms the fine structure 
of the laser pulse.

At a great time the modes with large detuning value 
n∆  insensibly decrease and a single-mode generation is 

realized [3]. 
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ЭФФЕКТ ИНДУЦИРОВАННОЙ ИНТЕРФЕРЕНЦИИ И ФОРМИРОВАНИЕ ПРОСТРАНСТВЕННО 
ВОЗМУЩЕННОЙ ТОНКОЙ СТРУКТУРЫ В НЕРАВНОВЕСНОЙ ОТКРЫТОЙ СИСТЕМЕ

В.M. Kуклин
Показано, что моды нестабильного спектра неустойчивости вблизи порога способны сформировать дол-

го живущую тонкую структуру и аномальные интерференционные всплески, индуцированные накачкой.

ЕФЕКТ ІНДУКОВАНОЇ ІНТЕРФЕРЕНЦІЇ ТА ФОРМУВАННЯ ПРОСТОРОВО ЗБУРЕНОЇ ТОНКОЇ 
СТРУКТУРИ У НЕРІВНОВАЖНІЙ ВІДКРИТІЙ СИСТЕМІ

В.M. Kуклін
Показано, що моди нестабільного спектру нестійкості поблизу порогу здібні сформувати тривало живучу 

тонку структуру та аномальні інтерференційні сплески, індуковані накачкою.
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