УДК 546.32:577.34:597.08

В. В. Беляев¹, Е. Н. Волкова¹, В. В. Скиба²

ОПРЕДЕЛЕНИЕ СКОРОСТИ ПОСТУПЛЕНИЯ ⁹⁰Sr И ¹³⁷Cs В ОРГАНИЗМ ПРЕСНОВОДНЫХ РЫБ

Определены уровни содержания радионуклидов у рыб рыбохозяйственных прудов лесостепной зоны, расположенных в Таращанском районе Киевской области. Рассчитана скорость поступления ⁹⁰Sr и ¹³⁷Cs в организм 7 видов пресноводных рыб.

Ключевые слова: пресноводные рыбы, ⁹⁰Sr, ¹³⁷Cs, скорость поступления радионуклидов.

Использование атомной энергии в мирных и военных целях приводит к радионуклидному загрязнению окружающей среды. Водные экосистемы являются конечным звеном миграции радионуклидов [7, 11] и, с одной стороны, выполняют функции транзита поллютанта, с другой — аккумулятора. Поэтому считается, что радионуклиды, поступающие в организм человека с водой и рыбой, играют существенную роль в формировании дозовых нагрузок на население [9]. В условиях прогрессирующего радионуклидного загрязнения континентальных водоемов важной задачей радиоэкологических исследований является математическое моделирование уровня накопления радиоактивных изотопов промысловыми рыбами. Известны простейшие модели, которые базируются на коэффициентах накопления [13], иногда с учетом концентрации неизотопного носителя [5, 15, 16]. Более сложные динамические модели [1, 2, 4—6] обладают большей точностью, особенно в состояниях, далеких от равновесия. При динамическом моделировании накопления радионуклидов рыбами принято использовать такие параметры, как скорость (поток) поступления и скорость выведения радионуклидов из организма. Скорость выведения радионуклидов из организма рыб изучали в многочисленных экспериментальных исследованиях [1, 2, 8, 12, 18]. Определить экспериментально скорость поступления радионуклидов в организм рыб достаточно сложно с методической точки зрения, поэтому работы в этом направлении практически не проводились. Обычно данный параметр вычисляется при верификации модели для конкретного водоема [3, 5], поэтому его применение ограничено. Целью работы было определение инвариантной величины скорости поступления ⁹⁰Sr и ¹³⁷Cs в организм рыб.

Материал и методика исследований. При описании динамики используют однокамерные [3, 5] и многокамерные модели содержания радионукли-

© Беляев В. В., Волкова Е. Н., Скиба В. В., 2011

дов в организме рыб [1, 4, 12]. Считается, что скорость выведения радионуклида из камер разная. Понятие доли (фонда) радионуклида, которая аккумулируется в камере, тождественно понятию вклада компонент выведения. При изучении скорости выведения ¹³⁷Cs из организма рыб было зафиксировано до трех компонент выведения [1, 2, 12]. Медленной компоненте выведения ⁹⁰Sr из организма рыб соответствует часть радионуклида, сосредоточенная в костной ткани, ¹³⁷Cs — в мышцах.

В общем случае изменение содержания радионуклида в организме описывается следующим выражением:

$$dA_r/dt = V - \sum A_i A_r p_i$$
, i = 1, n,

где A_r — содержание радионуклида в организме, Бк; V — поток (скорость поступления) радионуклида в организм в единицу времени, Бк/сут; A_i — парциальный вклад компонент выведения; p_i , — эффективная скорость выведения парциальных компонент, сут⁻¹, которая связана с периодом полувыведения следующим соотношением: $p_i = \ln 2/T_i$, T_i — парциальный период полувыведения; n — количество компонент.

Учитывая, что $A_r = A_f m (A_f - удельная активность, Бк/кг; m - масса, кг), получаем следующее выражение:$

$$d(A_f m)/dt = V - \sum A_i A_f m p_i$$
, $i = 1, n$.

После деления на массу получаем:

$$dA_{f} / dt + A_{f} d \ln(m) / dt = V_{1} - \sum A_{i} A_{f} p_{i}, i = 1, n,$$
(1)

где V₁ — удельное поступление радионуклида в организм.

Решением уравнения (1) относительно V_1 будет следующее выражение:

$$V_{1} = dA_{f}/dt + A_{f} d \ln(m)/dt + \sum A_{i}A_{f} p_{i} = dA_{f}/dt + A_{f} (d \ln(m)/dt + \sum A_{i} p_{i}).$$

$$(2)$$

Фактический материал был получен в 2005—2007 гг. при радиоэкологическом обследовании прудов полносистемного рыборазводного хозяйства ЗАО «Таращаплемсельрыбхоз» [10, 14], размещенных в зоне гарантированного добровольного отселения (III зона) на территории Таращанского р-на Киевской обл. Пруды построены в русле и пойме р. Котлуй — правого притока р. Роси. Вылов рыб осуществлялся при спуске воды с 5 октября по 15 ноября. Наполнение прудов происходило до 5 мая.

Объектами исследований были: двухлетки и трехлетки карпа — *Cyprinus* carpio L., карася серебряного — *Carassius auratus gibelio* (Bloch), толстолобика белого — *Hypophthalmichthys molitrix* Valenciennes, толстолобика пестрого — *Aristichthys nobilis* Richardson, амура белого — *Ctenopharyngodon idella* Valenciennes, окуня речного — *Perca fluviatilis fluviatilis* L., сеголетки и двухлетки щуки — *Esox lucius* L.

Содержание радионуклидов определяли на кафедре безопасности жизнедеятельности Белоцерковского национального аграрного университета: ¹³⁷Cs — на сцинтилляционном гамма-спектрометре комплекса «Гамма-плюс», ⁹⁰Sr — после концентрирования на оксалатах на сцинтилляционном бета-спектрометре комплекса «Гамма-плюс» [14]. С целью уменьшения неопределенности расчеты проводились для видов рыб, отловленных в одном пруду. При расчетах потока радионуклидов использовали относительные величины, что позволяет не учитывать ошибки калибровки приборов. Результаты измерений представлены в виде среднее значение ± доверительный интервал, результаты расчетов — значение ± ошибка.

Результаты исследований и их обсуждение

Удельная активность ⁹⁰Sr в организме рыб была зафиксирована на уровне 1,5—10 Бк/кг (табл. 1), при этом удельное содержание ⁹⁰Sr у трехлеток рыб исследованных видов было выше, чем у двухлеток. Наименьший уровень ⁹⁰Sr наблюдали в организме окуня, максимальный — у карпа. В организме карася серебряного содержание радионуклида было на 10—15% ниже, чем у карпа. Удельное содержание ⁹⁰Sr в организме белого, пестрого толстолобиков и белого амура было в 1,5 раза, у окуня — в 3 раза меньше, чем в организме карпа (см. табл. 1).

Необходимо отметить, что с увеличением концентрации ⁹⁰Sr в воде прудов увеличивалось удельное содержание этого радионуклида в организме рыб, при этом наблюдалась значительная вариация коэффициента накопления. Так, для трехлеток карпа величины коэффициента накопления ⁹⁰Sr составляли в пруду № 6 — 2100 ± 470, № 4 — 1300 ± 850, № 1 — 1100 ± 660.

Наименьший средний уровень содержания ¹³⁷Cs наблюдался в организме карася серебряного, наиболее высокий — в организме ихтиофагов старших возрастов. Среди мирных рыб наивысший уровень удельного содержания радионуклида отмечен у пестрого толстолобика (см. табл. 1).

Увеличение содержания радионуклидов у рыб удобно характеризовать коэффициентом годового возрастания удельной активности (R), который равен отношению удельных активностей радионуклидов в организме одних и тех же видов рыб с возрастом (в годах): n и n-1. Максимальное значение R ⁹⁰Sr было зарегистрировано у карпа, а минимальное — у щуки (табл. 2). Максимальное увеличение содержания ¹³⁷Cs за год отмечено у карася серебряного и щуки (1,6—1,8 раза), для других исследованных видов рыб такое увеличение в среднем составляло 1,3 раза (табл. 3).

Увеличение удельной активности радионуклидов в организме прудовых рыб со временем согласуется с решением уравнения (1) с начальными условиями ($A(0) = 0, V_1$ — const), которое для случая $dA_f/dt >> A_f d \ln(m)/dt$ имеет вид:

" A d'AIDHIAN ANTINI AN ANN AN ANN AN AN AN AN AN AN AN AN A		and American role						
9C	Ę	ΠpyA	, Nº 6	Пруд	Nº 4	Пруд	Nº 1	
БИДЫ РЫО	возраст рыо	$^{90} m{Sr}$	^{137}Cs	$^{90}\mathrm{Sr}$	^{137}Cs	⁹⁰ Sr	¹³⁷ Cs	
Карп	+ + +	$4,52 \pm 0,23$	$1,31 \pm 0,06$	$5,04 \pm 0,35$	$1,65 \pm 0,15$	$5,95 \pm 0,23$	$2,04 \pm 0,24$	
	2 +	$6,91 \pm 0,35$	$1,74 \pm 0,1$	$7,67 \pm 0,61$	$2,2 \pm 0,25$	$8,6 \pm 0,52$	$2,76 \pm 0,19$	
Толстолобик белый	1	$2,72 \pm 0,18$	$1,82 \pm 0,19$	$3,07 \pm 0,15$	$2,34 \pm 0,21$	$3,66 \pm 0,26$	$2,89 \pm 0,23$	
	2 +	$3,86 \pm 0,19$	$2,13 \pm 0,11$	$4,48 \pm 0,36$	$2,9 \pm 0,17$	$5,23 \pm 0,58$	$3,58 \pm 0,25$	
Толстолобик пестрый	$^{1+}$	$3,65 \pm 0,19$	$2,02 \pm 0,09$	$4,14 \pm 0,2$	$2,71 \pm 0,22$	$4,8 \pm 0,4$	$3,19 \pm 0,22$	
	2 +	$4,95 \pm 0,54$	$2,62 \pm 0,23$	$5,41 \pm 0,51$	$3,33 \pm 0,44$	$6,41 \pm 0,51$	$4,12 \pm 0,34$	
Белый амур	$^{1+}$	$3,34 \pm 0,2$	$1,88 \pm 0,16$	$3,69 \pm 0,25$	$2,33 \pm 0,17$	$4,36 \pm 0,37$	$2,88 \pm 0,21$	
	2 +	$4,89 \pm 0,33$	$2,41 \pm 0,16$	$5,09 \pm 0,43$	$2,83 \pm 0,21$	$6,01 \pm 0,29$	$3,49 \pm 0,34$	
Карась серебряный	+1	$4,36 \pm 0,34$	$0,87 \pm 0,07$	$4,62 \pm 0,26$	$1,07 \pm 0,05$	$5,57 \pm 0,33$	$1,32 \pm 0,11$	
	2 +	$6,11 \pm 0,35$	$1,45 \pm 0,07$	$6,61 \pm 0,19$	$1,97 \pm 0,16$	$7,61 \pm 0,65$	$2,43 \pm 0,16$	
Окунь	$^{1+}$	$1,71 \pm 0,14$	$2,29 \pm 0,22$	$1,86 \pm 0,09$	$3,25 \pm 0,19$	$2,21 \pm 0,2$	$4,31 \pm 0,25$	
	2+	$2,33 \pm 0,21$	$3,36 \pm 0,27$	$2,8 \pm 0,27$	$4,31 \pm 0,47$	$3,42 \pm 0,29$	$5,35 \pm 0,63$	
Щука	+0	$3,04 \pm 0,24$	$1,26 \pm 0,1$	$2,6 \pm 0,2$	$3,45 \pm 0,3$	$3,51 \pm 0,39$	$4,75 \pm 0,46$	
	$^{1+}$	$3,32 \pm 0,23$	$2,97 \pm 0,21$	$3,28 \pm 0,22$	$4,44 \pm 0,37$	$3,87 \pm 0,3$	$5,76 \pm 0,48$	

1. Удельная активность радионуклидов в организме рыб, Бк/кг (n = 5)

Водная радиоэкология

2. Коэффициент годового возрастания активности ⁹⁰Sr в организме прудовых рыб

Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$1,53 \pm 0,13$	$1,52 \pm 0,18$	$1,45 \pm 0,12$
Толстолобик белый	$1,42 \pm 0,13$	$1,46 \pm 0,16$	$1,43 \pm 0,22$
Толстолобик пестрый	$1,36 \pm 0,19$	$1,31 \pm 0,16$	$1,34 \pm 0,18$
Белый амур	$1,46 \pm 0,15$	$1,38 \pm 0,17$	$1,38 \pm 0,15$
Карась серебряный	$1,40 \pm 0,16$	$1,43 \pm 0,10$	$1,37 \pm 0,16$
Окунь	1,36 = 0,19	$1,51 \pm 0,19$	$1,55 \pm 0,22$
Щука	$1,09 \pm 0,13$	$1,26 \pm 0,15$	$1,10 \pm 0,17$

3. Коэффициент годового возрастания активности ¹³⁷Cs в организме прудовых рыб

Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$1,33 \pm 0,11$	$1,33 \pm 0,22$	$1,35 \pm 0,21$
Толстолобик белый	$1,17 \pm 0,16$	$1,24 \pm 0,15$	$1,24 \pm 0,15$
Толстолобик пестрый	$1,30 \pm 0,15$	$1,23 \pm 0,22$	$1,29 \pm 0,16$
Белый амур	$1,28 \pm 0,16$	$1,21 \pm 0,15$	$1,21 \pm 0,17$
Карась серебряный	$1,67 \pm 0,18$	$1,84 \pm 0,20$	$1,84 \pm 0,22$
Окунь	$1,47 \pm 0,21$	$1,33 \pm 0,19$	$1,24 \pm 0,19$
Щука	$2,36 \pm 0,29$	$1,29 \pm 0,18$	$1,21 \pm 0,18$

$$A_{f}(t) = \sum A_{i} V_{1} T_{i} / \ln 2 [1 - \exp(-t \ln 2/T_{i})], \ i = 1, \ 3.$$
(3)

Для расчета потока поступления радионуклида в организм рыб подставим в уравнение (2) значения R. Известно, что ⁹⁰Sr в организм рыб поступает из водных масс [17], ¹³⁷Cs — с кормовыми объектами [15], поэтому для ⁹⁰Sr период поступления был выбран равным одному году, для ¹³⁷Cs — времени нагула. Принимаем, что время нагула мирных видов продолжается с 5 мая по 25 октября (170 сут), хищных — составляет 365 сут. Фактический средний прирост массы за это время составлял: для карпа — 834 ± 29, белого толстолобика — 593 ± 32, пестрого толстолобика — 619 ± 23, белого амура — 684 ± 25, карася серебряного — 109 ± 8, окуня — 99 ± 9, щуки — 361 ± 27 г. При этом средняя масса двухлеток (для щуки 0+) равна соответственно 503 ± 14 г, 637 ± 17, 809 ± 14, 762 ± 14, 153 ± 5, 108 ± 6, 344 ± 14 г [10, 14].

Оценка литературных данных [5, 8, 17] показывает, что для ⁹⁰Sr T_3 составляет около 900 сут и вкладом быстрых компонент выведения можно пренебречь, поэтому принимаем $A_3 = 1$. В экспериментальных работах по изучению скорости выведения ¹³⁷Cs из организма рыб было получено, что $A_1 \approx A_2$

Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$2,6 \pm 0,2$	$2,9 \pm 0,3$	$3,2 \pm 0,2$
Толстолобик белый	$1,2 \pm 0,1$	$1,4 \pm 0,2$	$1,6 \pm 0,2$
Толстолобик пестрый	$1,4 \pm 0,2$	$1,5 \pm 0,2$	$1,7 \pm 0,2$
Белый амур	$1,4 \pm 0,1$	$1,5 \pm 0,2$	$1,7 \pm 0,2$
Карась серебряный	$1,7 \pm 0,2$	$1,8 \pm 0,2$	$2,0 \pm 0,3$
Окунь	$0,7 \pm 0,1$	$0,9 \pm 0,1$	$1,0 \pm 0,1$
Щука	$0,9 \pm 0,1$	$1,0 \pm 0,1$	$1,1 \pm 0,2$

4. Удельный поток поступления ⁹⁰Sr в организм прудовых рыб, *n*·10⁻² Бк/(кг·сут)

 $\approx 1/3 A_{3i} T_1 = 1$ сут., $T_2 = 10$ сут., $T_3 = 100$ сут [1, 2, 12]. Подставляя эти значения в формулу (3), получаем, что на промежутках времени больше 150 сут вкладом быстрых компонент выведения можно пренебречь. Тогда формула (2) приобретает вид:

$$V_1 = dA_f / dt + A_f (d \ln(m) / dt + A_3 p_3),$$
(4)

Расчеты показывают, что в организм мирных рыб 90 Sr поступает со скоростью 0,018 ± 0,006, хищных в два раза медленнее — 0,009 ± 0,002 Бк/(кг·сут) (табл. 4). Удельный поток поступления 137 Cs в организм мирных видов рыб составляет 0,023 ± 0,006; хищных — 0,026 ± 0,007 Бк/(кг·сут) (табл. 5).

То, что удельная скорость поступления ¹³⁷Сѕ в организм хищных и мирных рыб достоверно не отличается, а удельная активность¹³⁷Сѕ у ихтиофагов, как правило, в 2—3 раза выше, объясняется тем, что исследованные виды мирных рыб питаются только в сезон нагула, а хищные — круглогодично. Следовательно, радионуклид в организм рыб одного типа питания поступает только в период нагула, другого — во все сезоны.

Применение полученных нами величин удельного потока поступления радионуклидов в организм рыб ограничено водоемами со сходным уровнем радионуклидного загрязнения. Для инвариантности применения этого параметра нормируем выражение (4) на удельную активность:

$$V_2 = A_f^{-1} dA_f / dt + d(\ln(m)) / dt + A_3 p_3,$$
(5)

где V₂ — удельный относительный поток радионуклидов в организм пресноводных рыб.

Удельный относительный поток поступления ⁹⁰Sr в организм мирных видов рыб составляет 0,0036 \pm 0,0005, ¹³⁷Cs — 0,0099 \pm 0,0011; хищных видов — соответственно 0,0034 \pm 0,0003 и 0,0070 \pm 0,0007 сут⁻¹ (табл. 6, 7).

Водная радиоэкология

· <u>-</u> ·			
Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$1,8 \pm 0,1$	$2,2 \pm 0,3$	$2,8 \pm 0,3$
Толстолобик белый	$1,8 \pm 0,2$	$2,4 \pm 0,3$	$3,0 \pm 0,3$
Толстолобик пестрый	$2,1 \pm 0,2$	$2,6 \pm 0,4$	$3,3 \pm 0,4$
Белый амур	$2,0 \pm 0,2$	$2,3 \pm 0,3$	$2,8 \pm 0,4$
Карась серебряный	$1,2 \pm 0,1$	$1,6 \pm 0,2$	$2,0 \pm 0,2$
Окунь	$2,0 \pm 0,3$	$2,5 \pm 0,4$	$3,2 \pm 0,5$
Щука	$1,8 \pm 0,2$	$2,7 \pm 0,4$	$3,5 \pm 0,6$

5. Удельный поток поступления ¹³⁷Сs в организм прудовых рыб, *n*·10⁻² Бк/(кг·сут)

6. Относительный удельный поток поступления 90 Sr в организм прудовых рыб, $n \cdot 10^{-3} \, \mathrm{cyr}^{-1}$

Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$4,6 \pm 0,4$	$4,6 \pm 0,5$	$4,4 \pm 0,4$
Толстолобик белый	$3,5 \pm 0,4$	$3,6 \pm 0,5$	$3,5 \pm 0,6$
Толстолобик пестрый	$3,2 \pm 0,5$	$3,1 \pm 0,5$	$3,1 \pm 0,5$
Белый амур	$3,5 \pm 0,4$	$3,3 \pm 0,5$	$3,3 \pm 0,4$
Карась серебряный	$3,2 \pm 0,4$	$3,2 \pm 0,3$	$3,1 \pm 0,5$
Окунь	$3,4 \pm 0,5$	$3,7 \pm 0,5$	$3,7 \pm 0,6$
Щука	$3,0 \pm 0,5$	$3,4 \pm 0,5$	$3,0 \pm 0,6$

7. Относительный удельный поток поступления $^{137}\rm{Cs}$ в организм прудовых рыб, $n{\cdot}10^{-3}\,\rm{cyr}^{-1}$

Виды рыб	Пруд № 6	Пруд № 4	Пруд № 1
Карп	$11,6 \pm 1,0$	$11,6 \pm 1,7$	$11,7 \pm 1,5$
Толстолобик белый	$8,9 \pm 1,2$	$9,3 \pm 1,1$	$9,3 \pm 1,1$
Толстолобик пестрый	$9,0 \pm 1,1$	$8,7 \pm 1,6$	$9,0 \pm 1,2$
Белый амур	$9,3 \pm 1,1$	$9,0 \pm 1,1$	$8,9 \pm 1,3$
Карась серебряный	$10,3 \pm 1,0$	$10,8 \pm 1,2$	$10,8 \pm 1,2$
Окунь	$7,0 \pm 1,2$	$6,7 \pm 1,2$	$6,5 \pm 1,2$
Щука	$8,3 \pm 1,2$	$6,8 \pm 1,2$	$6,7 \pm 1,2$

Отсутствие достоверной разницы величин относительного удельного потока радионуклидов в организм рыб в разных прудах подтверждает наше предположение об инвариантности полученной величины.

Заключение

На примере рыборазводных прудов Киевской области установлено, что, независимо от уровня радионуклидного загрязнения и в условиях равновесного накопления, относительный удельный поток радионуклидов в организм мирных видов рыб составляет: 90 Sr — 0,0036 ± 0,0005, 137 Cs — 0,0099 ± 0,0011; хищных видов — соответственно 0,0034 ± 0,0003 и 0,0070 ± 0,0007 сут⁻¹.

**

**

Визначено рівні вмісту радіонуклідів у риб рибогосподарських ставів лісостепової зони, що розташовані у Таращанському районі Київської області. Розрахована швидкість надходження ⁹⁰Sr та ¹³⁷Cs до організму 7 видів прісноводних риб.

The levels of contents of radionuclides in fish of fish ponds in forest-steppe which disposed in Taracha region of Kiev area was determined. The rate of arrival ⁹⁰Sr and ¹³⁷Cs into organism of 7 species freshwater fish was calculated.

1. *Белясв В.В.* Накопичення та виведення цезію-137 з організму гідробіонтів: Автореф. дис. ... канд. біол. наук. — К., 2001. — 18 с.

- 2. *Волкова О.М.* Техногенні радіонукліди у гідробіонтах водойм різного типу: Автореф. дис. ... докт. біол. наук. К., 2008. 34 с.
- Дзюба Н.Н., Тодосиенко С.В. Валидация математических моделей миграции радиоцезия в экосистеме Киевского водохранилища // Наук. праці УкрНДГМІ. — 2002. — Вип. 250. — С. 298—309.
- Егоров В.Н. Динамические закономерности радиохемоэкологических процесов в морской среде: Автореф. дис. ... докт. биол. наук. — Киев, 1987. — 33 с.
- Крышев А.И. Динамическое моделирование переноса радионуклидов в гидробиоценозах и оценка последствий радиоактивного загрязнения для биоты и человека: Автореф. дис. ... докт. биол. наук. — Обнинск, 2008. — 50 с.
- Крышев И.И., Сазыкина Т.Г. Математическое моделирование миграциии радионуклидов в водных экосистемах. — М.: Энергоатомиздат, 1986. — 152 с.
- Кутлахмедов Ю. А., Поликарпов Г. Г., Кутлахмедова-Вишнякова В. Ю. Применение теории радиоемкости экосистем для экологического нормирования в водных экосистемах // Другий з'їзд гідроекол. т-ва України, Київ, 27—31 жовт. 1997 р.: Тез. доп. — К., 1997. — С. 167.
- Лебедева Г.Д. Накопление и выведение радиоактивного стронция у пресноводных рыб при разных условиях // Некоторые проблемы гидробиологии: Тр. МОИП, отд. биол. — 1968. — Т. 30. — С. 170—180.
- 9. *Марей А.Н.* Санитарная охрана водоемов от загрязнений радиоактивными веществами. — М.: Атомиздат, 1976. — 224 с.

- 10. *Методичні* рекомендації щодо ведення рибництва на радіаційно забруднених територіях лісостепової зони. — Біла Церква: Білоцерк. нац. агр. ун-т, 2009. — 22 с.
- Миграция радионуклидов в пресноводных и наземных экосистемах Т. 1. — Екатеринбург: Изд-во Урал. ун-та, 2007 — 480 с.
- 12. Моделирование и изучение механизмов переноса радиоактивных веществ из наземных экосистем в водные объекты зоны влияния Чернобыльской аварии: Заключительный отчет проекта экспериментального сотрудничества. Чорнобиль: Чорнобильтехінформ, 1996. — 195 с.
- Національний стандарт України. Система радіоекологічного моніторингу селітебних територій. Технічні умови. ДСТУ 4742:2007. Видання офіційне. — К.: Держспоживстандарт України, 2008. — 13 с.
- 14. *Скиба В. В.* Оцінка міграції ¹³⁷Cs і ⁹⁰Sr у водних екосистемах рибоводних ставків на радіоактивно забруднених територіях лісостепу: Автореф. дис. … канд. с-х. наук. Житомир, 2010. 21 с.
- 15. *Флейшман Д. Г.* Щелочные элементы и их радиоактивные изотопы в водных экосистемах. Л.: Наука, 1982. 160 с.
- 16. Хомутінін Ю.В., Кашпаров В.О., Данилеський С.Є. Оцінка радіоекологіної безпеки непроточних і напівпроточних водойм на території, забрудненний радіонуклідами внаслідок Чорнобильської катастрофи // Чорнобильський наук. вісник: Бюлетень екологічного стану зони відчуження та безумовного (обов'язкового) відселення. — 2009. — № 3 (34). — С. 11 — 36.
- 17. *Шеханова И. А.* Радиоэкология рыб. М.: Лег. и пищ. пром-сть, 1983. 208 с.
- Kirchmann R., Vandecasteele C.M., Foulquier L. et al. La radioecologie des grands fleuves: des donnees de sites et de l'experimentation a la modelisation (application a la Meuse et au Rhone) — BLG635, 1992. — 70 p.

¹ Институт гидробиологии НАН Украины, Киев

² Белоцерковский национальный

аграрный университет

Поступила 20.06.11