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We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in 
the framework of our approach, which was proposed recently.
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1. INTRODUCTION
Theoretical  studies  of  the  radiation  from  planar-

channeled  electrons  and  positrons  are  due  to 
M.A. Kumakhov and R. Wedell [1], N.K. Zhevago [2], 
A.I. Akhiezer, I.A. Akhiezer and N.F. Shul`ga [3,4]. 

Experimentally  the channeling  radiation  (CR)  of 
positrons  was  observed  by  different  groups  [5,6] 
demonstrating strong and sharp peaks in the spectrum. 

The purpose of the present work is to calculate the 
spectral-angular distribution of the channeling radiation 
intensity  emitted  from positrons  in  the  framework  of 
approach, which was proposed recently [7]. 

2. GENERAL REMARKS ON CR AND 
CALCULATION

We consider a relativistic charged particle incident 
onto a crystal at a small angle to a crystal planes. In the 
planar channeling case for positively charged positrons, 
the channel is between the crystal planes. This channel 
is  the  source  of  a  potential  well  in  the  direction 
transverse to particle motion giving rise to transversely 
bound  states  for  the  particle. Transitions  to  lower-
energy  states  lead  to  the  phenomenon  known  as 
channeling  radiation  (CR).  Calculations  of  the  CR 
process are carried out by using the rules of quantum 
electrodynamics  [1,2].  The  Doppler  formula  for  the 
energy of  photon emitted is  derived using the energy 
and momentum conservation laws. For this energy one 
gets
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where nnnn ′−=′ εεω ;  nε  and   n′ε are the discrete 
energy  levels  of  the  transverse  oscillations  of  the 
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=β ,  E and //p  are  the  energy 

and the longitudinal momentum of the positron, and θ  
is  the  angle  of  radiation  emission  relative to  the 

direction  of  motion  of  the  channeled  positron. For 
positrons  of  not  too high transverse energies,  a  good 
approximation  (see  e.g.,  Ref. [1,2])  is  the  harmonic 
potential leading to equidistant energy levels

)2/1( +Ω= nnε                                 (2)

where  ,022

E

U

pd
=Ω  pd  is  the  distance  between 

planes in the corresponding units, and  0U is the depth 

of the potential well. Since )2
2

1
1(// −−≈ γ

E

p
 (where 

m

E
=γ ),  )2

2

1
1(cos θθ −≈  and  taking  into  account 

Eq. (2), Eq. (1) can be expressed as

)221(

)(22
γθ

γω
+

′−Ω
=

nn
                                   (3)

It follows from Eq. (3) that the radiation of a maximum 
frequency 

)(22 nn ′−Ω= γω                                       (4)
is emitted in the forward direction  (at 0=θ ). The case 

1=′− nn  corresponds  to  the  peak  values  of  the 
experimental channeling radiation spectra [6], being the 
first harmonic with the photon energy Ω= 22γω . As it 
follows  from  Eq. (3),  photons  emitted  via  positron 
transition from any initial level n to the final level 1−n  
are identical (i.e., have the same energies for the same 
emission  angles).  This  means  that  the  resulting 
amplitude should be given by an additive superposition 
of amplitudes of all such transitions. The positron state 
outside  the  crystal  )0( <z  is  a  plane  wave,  whereas 
inside the crystal )0( >z , the part of its wave function 
corresponding  to  the  transverse  motion  is  a 
superposition  of  the  harmonic  oscillator  eigenvectors. 
Factors  nc  describing transitions from the initial state 
to  states  with  the  transverse  energy  levels  n  can  be 
found  using  boundary  conditions  set  upon  the  wave 
function  at  the  crystal  boundary  )0( =z .  Then,  a 
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transition to the closest  lower level  1−n  occurs with 
emission of a photon having energy ω . One may expect 
that the total amplitude of the transition from the initial 
to  final  state  accompanied by  the  photon  emission  is 
determined  by  products  of  the  amplitudes  nc  and 

1, −nnM .  Following the  rules  of  the quantum mecha-
nics, we express this amplitude as

∑ −∝
n nnMncA 1, ,                           (5)

were  summation  is  performed  over  all  the  harmonic 
oscillator  levels.  Also  we  must  find  an  additive 
superposition  of  amplitudes  of  all  transitions 

.,..3,2 −→−→ nnnn etc.  Taking  into  account 
these considerations, we can write the transition matrix 
element in the form
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where  nnj ′−= .  It is well known from the quantum 
electrodynamics  that  the  transition  matrix  element  is 
given by 
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where ,
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12 =e  3LV =  is the normalization volume, 

2,1=λ  indicates the linear photon polarization, and
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with  *
λεαλα
 ⋅= .  The prime indicates the final state. 

As  we  mentioned  above,  the  wave  function  is  the 
solution of  the time-independent  Dirac equation for a 
relativistic  particle  moving  with  momentum 

),,0(// zpypp =
 in  a  one-dimensional  planar 

potential  )(xU  periodic  in  the  x  direction  (which  is 
normal to the channeling planes)
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where m  and E  are the particle’s mass and energy, α  
and  β  are  the  Dirac  matrices.  Separating  the  wave 
function Ψ  into large and small components,
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and  using  the standard  representation  for  the  Dirac 
matrices,  leads  to  a  Pauli-type  equation  for  the  large 
components,
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Since a potential )(xU  is independent of y  and z , the 
solution of last equation is a plane wave in the yz  plane

χϕ )()](exp[ xyypzzpia +∝Ψ .        (11)
This allows us to transform a Pauli-type equation into a 
one-dimensional,  relativistic  Schrödinger  equation  for 
the transverse motion
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In  a  given  potential,  the  latter  will  assume  certain 
bound-state eigenvalues  ,...)2,1,0(0 =< nnε , with 

corresponding  eigenfunctions  )(xnϕ . The  wave 
function of Eq.(10) is finally obtained in the form
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where  2L  being  the  two-dimensional  normalization 

volume  for  the  plane  waves, 
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being a two-component spinor which is  
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when  the  particle  spin  points  in  the  z+ or  the  z−  
direction  in  the  rest  frame,  respectively.  For  the 

harmonic potential 2
0)( xUxU = , it is well known that 

the corresponding eigenfunctions being given by 
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where  nH  are the Hermite polynomials. According to 
Eq.  (8), we find, using Eq. (13) and last expression for 
the  wave  functions,  the  first-order  matrix  element 
corresponding to the jnn −→  transverse transition
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Then  we  calculate  the  matrix  element  and  the 
differential  intensity,  and  after  summation  over 
polarization of emitted photon and the positron we find 

by integrating over //
2 pd ′  
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where the factors  nc  are, in the case of the parabolic 
potential and when the initial positron is a plane wave, 
given by 
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3. CONCLUSIONS
Following  N.K. Zhevago  [2],  the  spectral-angular 

distribution of emitted photons is represented as
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The sum entering Eq. (18) is the one over the quantum 
numbers f of the transverse motion of the particle. Then, 
the probability of having a definite transverse energy is 
taken into account by multiplying each term of this sum 
by a corresponding factor. In our consideration, discrete 
levels  of  the  transverse  motion  in  the  harmonic 
oscillator potential refer to the intermediate state of the 
particle.  Accordingly,  the contribution to the intensity 
due  to  transitions,  e.g.,  between  the  closest  levels  is 
determined by the square of the absolute value of 
Eq. (5)
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In other words, unlike Ref. [2], we get an expression 
that  contains  interference  terms mixing  amplitudes  of 
photon emission from different equidistant  levels.  We 
would like to note that dynamics of channeling electron 
in a crystal differs from that of the positron case. The 
transverse potential well for the electron does not give 

rise to equidistant energy levels for transverse particle 
motion.  Therefore,  there  are  no  interference 
contributions to the photon emission intensity similar to 
those  present  in  Eq. (19).  In  our  opinion,  this  could 
explain  the  greater  intensity  in  case  of  channeling 
positron compared to that for the electron observed in 
experiment  [6].  Corresponding  numerical  calculations 
will be given in a subsequent publication.  
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ИЗЛУЧЕНИЕ РЕЛЯТИВИСТСКИХ ПОЗИТРОНОВ
ПРИ ПЛОСКОСТНОМ КАНАЛИРОВАНИИ В КРИСТАЛЛАХ

В.Ф. Болдышев, М.Г. Шатнев

Представлены  подробные  вычисления  излучения  позитронов  при  плоскостном  каналировании  в 
кристаллической мишени в рамках предложенного ранее подхода.

ВИПРОМІНЮВАННЯ ВІД РЕЛЯТІВІСТСЬКИХ ПОЗІТРОНІВ 
ПРИ ПЛОЩИННОМУ КАНАЛІРУВАННІ В КРИСТАЛАХ

В.Ф. Болдишев,  М.Г. Шатнєв



Представлено  докладні обчислювання  випромінювання  при  каналіруванні  площинно-каналіруючих 
позітронів із кристаличної мішені за нашим  підхідом, який було запропоновано раніше. 
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