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We present a detailed calculation of channeling radiation of planar-channeled positrons from crystal targets in
the framework of our approach, which was proposed recently.

PACS: 61.85.+p; 41.60.-m

1. INTRODUCTION

Theoretical studies of the radiation from planar-
channeled electrons and positrons are due to
M.A. Kumakhov and R. Wedell [1], N.K. Zhevago [2],
A.L. Akhiezer, .LA. Akhiezer and N.F. Shul'ga [3,4].

Experimentally the channeling radiation (CR) of
positrons was observed by different groups [5,6]
demonstrating strong and sharp peaks in the spectrum.

The purpose of the present work is to calculate the
spectral-angular distribution of the channeling radiation
intensity emitted from positrons in the framework of

approach, which was proposed recently [7].

2. GENERAL REMARKS ON CR AND
CALCULATION

We consider a relativistic charged particle incident
onto a crystal at a small angle to a crystal planes. In the
planar channeling case for positively charged positrons,
the channel is between the crystal planes. This channel
is the source of a potential well in the direction
transverse to particle motion giving rise to transversely
bound states for the particle. Transitions to lower-
energy states lead to the phenomenon known as
channeling radiation (CR). Calculations of the CR
process are carried out by using the rules of quantum
electrodynamics [1,2]. The Doppler formula for the
energy of photon emitted is derived using the energy
and momentum conservation laws. For this energy one
gets
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where @, = €p €05 €, and €, are the discrete
energy levels of the transverse oscillations of the
positron in the channel before and after radiation,
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respectively; f s ‘E—//‘, Eand Py are the energy

and the longitudinal momentum of the positron, and 8
is the angle of radiation emission relative to the

direction of motion of the channeled positron. For
positrons of not too high transverse energies, a good
approximation (see e.g., Ref. [1,2]) is the harmonic
potential leading to equidistant energy levels
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Eq. (2), Eq. (1) can be expressed as
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It follows from Eq. (3) that the radiation of a maximum
frequency

=220 (n-n) )
is emitted in the forward direction (at § = 0). The case

n-n' =1 corresponds to the peak values of the
experimental channeling radiation spectra [6], being the
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first harmonic with the photon energy ¢ = 2y 2Q CAsit

follows from Eq.(3), photons emitted via positron
transition from any initial level n to the final level n- 1
are identical (i.e., have the same energies for the same
emission angles). This means that the resulting
amplitude should be given by an additive superposition
of amplitudes of all such transitions. The positron state

outside the crystal (z < 0) is a plane wave, whereas

inside the crystal (z > 0), the part of its wave function

corresponding to the transverse motion is a
superposition of the harmonic oscillator eigenvectors.

Factors ¢; describing transitions from the initial state

to states with the transverse energy levels 7 can be
found using boundary conditions set upon the wave

function at the crystal boundary (z = 0). Then, a
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transition to the closest lower level n- 1 occurs with
emission of a photon having energy @ . One may expect
that the total amplitude of the transition from the initial
to final state accompanied by the photon emission is

determined by products of the amplitudes ¢, and

M nn-1- Following the rules of the quantum mecha-
nics, we express this amplitude as
A0 ;1 chn,n-l s ®)

were summation is performed over all the harmonic
oscillator levels. Also we must find an additive
superposition of amplitudes of all transitions
n- n-2, n- n-3,.etc. Taking into account
these considerations, we can write the transition matrix
element in the form

iy
where j = n-n'_ It is well known from the quantum

electrodynamics that the transition matrix element is
given by
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where e2 =, V= L3 is the normalization volume,
1

A = 1,2 indicates the linear photon polarization, and

gy = peTe, ey g3 ®

with ¢ g sl The prime indicates the final state.

As we mentioned above, the wave function is the
solution of the time-independent Dirac equation for a
relativistic ~ particle moving with momentum

py = (0, Py, Pz) in a one-dimensional planar

potential U(x) periodic in the x direction (which is
normal to the channeling planes)

(o O+ E-fmV¥ = UV, Q)
where 7 and E are the particle’s mass and energy,

and f are the Dirac matrices. Separating the wave
function ¥ into large and small components,

y
Y :Hw“H
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and using the standard representation for the Dirac

matrices, leads to a Pauli-type equation for the large
components,
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Since a potential U(x) is independent of ¥ and z, the
solution of last equation is a plane wave in the Y? plane

Vo O expli(pyz+ pypy) () | (11)

This allows us to transform a Pauli-type equation into a
one-dimensional, relativistic Schrodinger equation for
the transverse motion
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In a given potential, the latter will assume certain

bound-state eigenvalues £, < 0 (n= 0,1, 2,.), with

corresponding  eigenfunctions ¢ ,(x). The wave
function of Eq.(10) is finally obtained in the form
Ng - - -
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where ;2 being the two-dimensional normalization
E+m

2E

volume for the plane waves, N = , and X
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when the particle spin points in the * zor the - z
direction in the rest frame, respectively. For the

harmonic potential U(x) = U Oxz, it is well known that

the corresponding eigenfunctions being given by
EQ 1
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where H, are the Hermite polynomials. According to

Eq. (8), we find, using Eq. (13) and last expression for
the wave functions, the first-order matrix element

corresponding to the 72 - 7~ j transverse transition
%
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Then we calculate the matrix element and the
differential intensity, and after summation over
polarization of emitted photon and the positron we find

by integrating over d 2 p'/ /

d2] eza)z2 v 2x
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where the factors ¢, are, in the case of the parabolic

potential and when the initial positron is a plane wave,
given by

2
Px

.n

i n Px
cp = 1 exp(- Hy(——=). (17
" o, Ve 2T 1P

3. CONCLUSIONS

Following N.K. Zhevago [2], the spectral-angular

distribution of emitted photons is represented as
a1 iy 2
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The sum entering Eq. (18) is the one over the quantum
numbers f of the transverse motion of the particle. Then,
the probability of having a definite transverse energy is
taken into account by multiplying each term of this sum
by a corresponding factor. In our consideration, discrete
levels of the transverse motion in the harmonic
oscillator potential refer to the intermediate state of the
particle. Accordingly, the contribution to the intensity
due to transitions, e.g., between the closest levels is
determined by the square of the absolute value of
Eq. (5)

2270

dwdo

In other words, unlike Ref. [2], we get an expression
that contains interference terms mixing amplitudes of
photon emission from different equidistant levels. We
would like to note that dynamics of channeling electron
in a crystal differs from that of the positron case. The
transverse potential well for the electron does not give

(18)
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rise to equidistant energy levels for transverse particle
motion. Therefore, there are no interference
contributions to the photon emission intensity similar to
those present in Eq. (19). In our opinion, this could
explain the greater intensity in case of channeling
positron compared to that for the electron observed in
experiment [6]. Corresponding numerical calculations
will be given in a subsequent publication.
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MN3JIYYEHHUE PEJIATUBUCTCKUX ITIO3UTPOHOB
IIPHU IIJIOCKOCTHOM KAHAJIMPOBAHUHU B KPUCTAJIJIAX
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IIpencraBneHsl MOAPOOHBIE BBIUMCIEHUS W3IY4YEHUS MO3UTPOHOB IPU IUIOCKOCTHOM KaHaJIMPOBAaHUHM B
KPHCTAJUIMIECKON MUIIEHH B paMKax MPEAJI0KEHHOTO paHee MoAX0a.

BUITPOMIHIOBAHHS BIJI PEJIATIBICTCBKHUX ITO3ITPOHIB
IPA TIJIOIMUHHOMY KAHAJIIPYBAHHI B KPUCTAJIAX
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[TpeacTaBneHo IOKJIaaHI OOYHMCIIOBAHHS BHUIIPOMIHIOBAHHS MpPU KaHaJIpyBaHHI IUIONIMHHO-KAHATIPYIOYHX
MO3ITPOHIB 13 KPUCTAINYHOI MillIeH] 32 HAIIUM ITiIXiZ0M, SIKUi OyJIO 3aIIPOIIOHOBAHO paHilIe.
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