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A condition, at which inverse power one-dimensional potential  
nxxxV 0)( −= α  (α = const, x0 = const, 

[;] + ∞∞−∈x , n is a natural number) becomes reflectionless during propagation through it of a plane wave, is 
obtained  on  the  basis  of  SUSY  QM  methods.  A  scattering  of  a  particle  on  spherically  symmetric  potential 

nrrrV 0)( −±= α  is analysed with taking into account of the reflectionless possibility.
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1. INTRODUCTION
Methods  of  supersymmetric  quantum  mechanics 

(SUSY QM) allow finding quantum systems (both in 
the region of continuous energy spectrum and discrete 
one), which potentials have a penetrability coefficient of 
particles through them equal to one. One can name such 
quantum systems (and their potentials) as reflectionless 
[1].

A resonant tunneling phenomenon and,  especially, 
papers,  directed  to  study  of  its  demonstration  in 
concrete physical problems (for example, see Ref. [2]), 
have  been  caused  an  increased  interest.  The 
penetrability  coefficient  of  the  barrier  during  the 
resonant tunneling becomes large to the maximum. But 
the reflectionless  potentials  are interested in that  they 
have  the  penetrability  coefficient,  practically  equal  to 
one in a whole region of the energy spectrum, whereas 
the resonant tunneling exists at  selected energy levels 
only. A number of papers devoted to study of properties 
of  the  reflectionless  quantum  systems  have  been 
increasing each year. Here, note the bright reviews [3, 
4],  where  both  the  methods  for  detailed  study  of 
properties  of  one-  and  multichannel  reflectionless 
quantum  systems,  and  enough  simple  approaches  for 
their qualitative understanding are presented. All these 
methods  have  found  their  application  in  scattering 
theory (both in direct problem and in inverse one).

Note,  that  SUSY  QM  methods  for  study  of  the 
properties  of  the  systems  in  the  continuous  energy 
spectrum are  developed less  than in  the discrete  one. 
Besides,  majority  of  the  obtained  reflectionless 
potentials  are  expressed with  use  of  series  in  enough 
complicated form, and any found reflectionless potential 
with  a  simple  analytical  form  can  be  useful  by  its 
clearness in qualitative analysis of the quantum systems 
properties. In this paper we analyse the one-dimensional 
and  spherically  symmetric  quantum  systems  in  the 
region  of  the  continuous  energy  spectrum,  which 
potentials have an inverse power dependence on a space 

coordinate,  and  we  obtain  conditions,  when  these 
systems (and potentials) become reflectionless.

2. INTERDEPENDENCE BETWEEN 
SPECTRAL CHARACTERISTICS OF 

POTENTIALS-PARTNERS
In  the  beginning  we  consider  an  one-dimensional 

case  of  a  motion  of  a  particle  with  mass  m inside  a 
potential  field  V(x).  Let's  introduce  the  following 
operators A and A+:
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where  W(x) is  a  function,  given  on  the  whole  space 
region x. We suppose that this function is continuous on 
the  whole  region  of  its  definition  except  for  some 
possible  points  of  discontinuity.  On  the  basis  of 
operators A and A+ one can construct two Hamiltonians 
for a motion of this particle inside two different fields 
V1 (x) and V2 (x):
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where potentials V1 (x) and V2 (x) are defined as follows:
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In development  of  SUSY QM theory the function 
W(x) is named as superpotential, whereas the potentials 
V1 (x) and  V2 (x) are  named  as  supersymmetric  
potentials-partners [5]. Composition of Hamiltonians of 
two quantum systems on the basis of the operators  A 
and  A+  establish  interdependence  between  spectral 
characteristics  (spectra  of  energy,  wave  functions)  of 
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these  systems.  One  can  see  a  reason  of  such 
interdependence  in  that  two different  potentials  V1 (x) 
and V2 (x) express through the same function W(x).

If the energy spectra of these systems are discrete, 
then one can write:

,
,

)2()2()2()2(
2

)1()1()1()1(
1

nnnn

nnnn

EAAH
EAAH

ϕϕϕ
ϕϕϕ

==
==

+

+

(4)

where  )1(
nE  and  )2(

nE  are  the  energy  levels  with 
number n (n is a natural number) for two systems with 
potentials  V1 (x) and  V2 (x),  )1(

nϕ and  )2(
nϕ  are  wave 

functions corresponding to these levels. We obtain:
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We displace V1 (x) by such a way that 0)1(
0 =E  (it 

has no influence into levels distribution inside energy 
spectra and into a form of wave functions). Analysing 
Eq. (5), one can obtain the following interdependencies 
between the energy spectra and the wave functions [5]:
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Here,  a  normalisation  condition  for  wave  functions 
inside  the  discrete  energy  spectrum  are  taken  into 
account:

.1|)(|,1|)(| 2)2(2)1( ∫∫ == dxxdxx nn ϕϕ (7)
If the energy spectra of two systems are continuous, 

then one can find interdependence between their wave 
functions also (here, the expressions (5) will be changed 
a little):

),,(),(
),,(),(

)2()1(

)1()2(

xkAconstxk
xkAconstxk

ϕϕ
ϕϕ

+⋅=
⋅=

(8)

where  ϕ(1)(k, x)  and ϕ(2)(k, x) are the wave functions 
for two systems with potentials  V1 (x) and  V2 (x).  For 
obtaining  the  exact  dependence  between  the  wave 
functions  in  Eq. (8)  one  need  to  take  into  account  a 
condition  of  their  normalisation  (for  the  continuous 
energy spectrum) with view of boundary conditions.

For the quantum systems with the continuous energy 
spectra the SUSY QM methods allow to establish the 
interdependence  between  the  coefficients  of  the 
penetrability  and the  reflection [5].  Let  the  potentials 
V1 (x) and V2 (x) be finite at ± ∞→x , i.e. at

±=± ∞→ WxW )( (9)
we obtain:

2
21 )()( ±=± ∞→=± ∞→ WxVxV . (10)

Consider propagation of a plane wave eikx in positive 
direction of  x-axis in the field of the potentials  V1 (x) 
and  V2 (x).  In result  of  its  incidence from the left  we 
obtain transmitted waves  T1 (k') eik’x and  T2 (k') eik’x, and 
also reflected waves R1 (k) e-ikx and R2 (k) e-ikx. We have:
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where k and k' are defined as follows:

.', 22
+− −=−= WEkWEk (12)

Taking  into  account  the  interdependence  (8) 
between the wave functions for  two systems with the 
continuous spectra, we write:
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where  N is  constant,  defined  from  the  normalisation 
conditions. Equating terms with the same exponent and 
estimating N, we obtain:
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Expressions  (14)  establish  the  interdependence 
between the amplitudes of penetrability and reflection 
for  two  quantum  systems.  The  coefficients  of 
penetrability and reflections of the potentials V1 (x) and 
V2 (x)  can be calculated as squares of  modules of  the 
penetrability and reflection amplitudes.

3. POTENTIAL OF THE FORM 
( ) 2

0)( xxconstxV −=

Let's consider superpotential of the form:
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where  α > 0, x0 > 0. On the basis of Eq. (3) we find 
supersymmetric potentials-partners V1 (x) and V2 (x):
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From  Eq. (16)  for  V1 (x) one  can  see  that  at  the 
condition

m2
=α (18)

potential  V1 (x) becomes  constant.  The  penetrability 
coefficient relatively the propagation of the plane wave 
through this potential equal to one and, in this sense, the 
potential  V1 (x) is  reflectionless.  In  accordance  with 
Eq. (14),  the  penetrability  coefficient  of  the  potential 
V2 (x) equals to one also:
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Note  the  following  property:  the  penetrability 
coefficient for the reflectionless potential is not changed 
with change of x0 (at x0 > 0).

At x0 < 0 the region x ∈ ]-|x0|, +|x0|[ appears, where 
the  potentials  have  infinite  high  values  and,  in  this 
sense,  they  have  absolute  opacity.  A  case  x0  =  0 is 
boundary.

4. ONE-DIMENSIONAL POTENTIAL 
V(x)=const / | x - x0

 | n  AND SPHERICALLY 
SYMMETRIC POTENTIALS

V(x)=const / | r - r0
 | n

Now  we  consider  more  general  case  with  the 
superpotential of the following form:
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where  α > 0,  x0 > 0,  n is a natural number. Find the 
potentials-partners V1 (x) and V2 (x):
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Therefore, the potential  V1 (x) can be constant only 
when the condition from the following one is fulfilled:

n=0  or  n=1. (23)

The  condition  n=0 gives  trivial  solutions.  Let's 
consider  another  condition:  n=1.  In  this  case  the 
potential  V2 (x) becomes reflectionless if the condition 
(18) is fulfilled. If the condition (23) is not fulfilled then 
one cannot reach the constancy of the potentials  V1 (x) 

or  V2 (x) by change of the coefficients  α and  m.  If to 
change  sign  at  W(x),  then  the  sign  at  the  potentials 
V1 (x) and  V2 (x) is  changed  also.  Here,  analysis 
described above remains applicable.

Now  we  generalise  the  analysis  of  the  one-
dimensional  reflectionless  potentials  described  above 
into spherically symmetric case (at l=0). Here, one need 
to  use  the  functions  W(r) and  V1,2 (r) for  the positive 
r>0 only. At n=1 we obtain:
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When  the  condition  (18)  is  fulfilled  then  the 
potential  V1 (r) is  constant,  the  potentials  V1 (r) and 
V2 (r) are reflectionless, and scattering of a particle upon 
them  is  resonant.  Note  that  a  case  n=1 is  boundary 
between  potentials  with  n>1 (where  an  incidence  of 
particle  upon  a  centre  is  possible)  and  the  potentials 
with n<1 (where the incidence of the particle upon the 
centre is not possible).

5. CONCLUSIONS
On the basis of SUSY QM methods the condition is 

found,  under  which  the  potential,  having  the  inverse 
power  dependence  on  a  space  coordinate,  becomes 
reflectionless  for  wave  propagation  through  it.  The 
potentials of such a type are interested in that they have 
enough obvious and simple form in a comparison on a 
number  of  potentials  studying  in  [3,4],  they  are 
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expressed through elementary functions in an analytical 
form in a contradiction on a majority of shape invariant 
potentials  studying in  [5]  and  expressing with use  of 
series, and they are considered often in problems of the 
scattering theory.

As further perspective, a problem of extension of a 
class  of  the  reflectionless  potentials  on  the  basis  of 
inverse  power  reflectionless  potentials  with  use  of 
canonical transformations of coordinates (this method is 
used for  obtaining new exactly  solvable potentials  on 
the basis of known one and described in details in [5]) 
can be studied.

Here, we note that solving the equation
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one can find a general form of the function W(x), which 
determines the reflectionless potentials. From here one 
can  obtain  all  types  of  the  reflectionless  potentials. 
Here, partial solutions of Eq. (25) are:
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where B = const. The superpotential W(x) = B tanh(α(x
−x0)) is known in literature (for example, see [5]).
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ОДНОМЕРНЫЕ ОБРАТНО СТЕПЕННЫЕ АБСОЛЮТНО ПРОЗРАЧНЫЕ ПОТЕНЦИАЛЫ 

ТИПА V(x)=const / | x - x0
 | n  

С.П. Майданюк 
С  помощью  методов  SUSY  QM  получено  условие,  при  котором  обратно  степенной  потенциал 

nxxxV 0)( −= α  (α = const,  x0 = const,  [,] + ∞∞−∈x ,  n – натуральное число) становится абсолютно 
прозрачным  при  прохождении  через  него  плоской  волны.  Представлен  анализ  рассеяния  частицы  на 
сферически-симметричном  потенциале  

nrrrV 0)( −±= α с  учетом  возможности  абсолютной 
прозрачности.

ОДНОВИМІРНІ ОБЕРНЕНО СТЕПЕНЕВІ АБСОЛЮТНО ПРОЗОРІ ПОТЕНЦІАЛИ

 ТИПУ   V(x)=const / | x - x0
 | n  

С.П. Майданюк 

На  основі  методів  SUSY  QM  отримано  умову,  при  якій  обернено  степеневий  потенціал 
nxxxV 0)( −= α  (α = const, x0 = const, [,] + ∞∞−∈x , n – натуральное число) стає абсолютно прозорим 

при  проходженні  крізь  його  плоскої  хвилі.  Представлено  аналіз  розсіювання  частинки  на  сферично-

симетричному потенціалі 
nrrrV 0)( −±= α з врахуванням можливості абсолютної прозорості.
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