КРАТКИЕ СООБЩЕНИЯ

УДК 539.21:536.42

ФАЗОВЫЕ РАВНОВЕСИЯ В ГИДРИДАХ И ДЕЙТЕРИДАХ ПЕРЕХОДНЫХ МЕТАЛЛОВ В МОДЕЛИ НЕИДЕАЛЬНОГО РЕШЕТОЧНОГО ГАЗА

В.С. Маринин, Ю.Ф. Шмалько, К.Р. Умеренкова Институт проблем машиностроения им. А.Н. Подгорного НАН Украины г. Харьков, Украина

Модифицированная схема термодинамической теории возмущений применена для моделирования фазовых равновесий в системах «переходный металл – изотопы водорода». Получена связь между макроскопическими характеристиками растворов внедрения Pd-H(D)_x, в частности параметрами фазовых переходов, и микроскопическими (атомными) характеристиками водородной подсистемы и решетки металла.

Конструктивные особенности и технические характеристики создаваемых металлогидридных (МГ) систем определяются противоречивыми требованиями, которые предъявляются условиями эксплуатации в составе систем-потребителей изотопов водорода. Поэтому в каждом конкретном случае решается задача оптимизации технических решений. включающих выбор рабочего металлогидрида, конструкций отдельных узлов, компоновки системы в целом, а также определения оптимальных режимов ее работы. Наряду с требованиями потребителя указанные решения комплексом будут определяться физикохимических, теплофизических и других параметров, характеризующих процессы термосорбционного взаимодействия гидридообразующего материала с изотопами водорода. Фазовые равновесия (ФР) в системах металл-изотопы водорода крайне важны в практическом отношении ввиду того, что РСТдиаграммы (соотношения между давлением. составом и температурой) гидридов и дейтеридов являются наиболее сложными характеристиками термосорбционных процессов.

При термодинамическом описании водородной подсистемы МГ и изотопных эффектов для ФР в гидридах переходных металлов применена модель неидеального (взаимодействующего) решеточного газа (РГ) атомов изотопов водорода, которая для водородного компонента рассматривает фазовые переходы в МГ, связанные с перераспределением атомов Н (D) в металлической матрице растворов внедрения, как изменения агрегатного состояния «решеточного флюида». Методом модифицированной теории возмущений (МТВ) [1,2] учтены как прямое взаимодействие между атомами изотопов водорода, так И косвенные «деформационные» вклады В потенциальную энергию вследствие расширения решетки при растворении изотопов водорода. Равновесные свойства решеточного газа определены для базисного случая растворов внедрения с единственным типом эквивалентных междоузлий. В рамках данной модели получена связь между макроскопическими характеристиками растворов внедрения Ме–H(D), в частности параметрами фазовых переходов [2], и микроскопическими (атомными) характеристиками водородной подсистемы и решетки металла.

Предполагается, что исходная кристаллическая структура металла идентична структуре металлической подрешетки неупорядоченных фаз гидрида (дейтерида).

В этом случае для химического потенциала ($\mu_{H(D)} = G_{H(D)} / N_{H(D)}$) водородного компонента МГ, ограничившись членами второго порядка теории возмущений, можно получить выражение [1]:

$$\beta \mu_{H}^{+}(\theta,T) = \ln \frac{\theta}{1-\theta} + \frac{W_{l}\theta}{T(1+\alpha c_{s}\theta)} + \frac{W_{2}\theta^{2}}{T^{2}(1+\alpha c_{s}\theta)^{2}}, \quad (1)$$

где β =1/kT; $\mu_{H}^{+} = \mu_{H} - \mu_{H}^{st}$; $\mu_{H}^{st}(T)$ – химический потенциал в стандартном состоянии ($\beta \mu_{H}^{st} = G_{H}^{st} / RT$); θ = c/c_{s} ; c – концентрация H(D) в виде атомного отношения H(D)/Me; c_{s} – сорбционная емкость металла (максимальное значение c); α = $c^{-1}(\Delta V(c)/V)$ – коэффициент дилатации Ме–матрицы [3].

Постоянные W_1 и W_2 равны:

$$W_1 = 2I_1 n_M (\sigma_1^3 / v_0) E_1 c_s, W_2 = (3I_2 / 4I_1^2) W_1^2,$$
(2)

где $I_1 = -5,585$; $I_2 = 1,262$ – параметры МТВ для H(D)-газа; n_M – число атомов Ме в элементарной ячейке; v_0 – ее объем при c=0; E_1 и σ_1 – параметры потенциала взаимодействия атомов H(D) $u_H(r)=kE_1\phi$ (r/σ_1) [1].

Указанный подход применен нами для получения аналитических выражений, позволяющих моделировать РСТ-диаграммы гидридных систем как в гомогенных фазовых полях (в том числе при закритических состояниях), так и в области двухфазных равновесий. Давление разложения β -фазы, т.е. перехода $\beta \rightarrow \alpha$, может быть представлено в традиционном вант–гоффовском виде:

$$\ln p_{H_2}^{(PL)}(T) = -\frac{\Delta H_{\beta \to \alpha}}{RT} + \frac{\Delta S_{\beta \to \alpha}}{R}.$$
 (3)

Серия: Физика радиационных повреждений и радиационное материаловедение (89), с. 235-238.

Применение метода МТВ к описанию свойств решеточного H(D)-газа позволило получить следующие работоспособные аналитические выражения (4) для энтальпии и энтропии разложения гидридных фаз:

$$\Delta H_{\beta \to \alpha} \cong H_{H_2}^0 + 2RT\Delta_{\beta \to \alpha},$$

$$\Delta S_{\beta \to \alpha} \cong S_{H_2}^0 - 2R\Delta_{\beta \to \alpha},$$

$$\Delta_{\beta \to \alpha} (T) = \beta (h_H^{(\alpha)} - h_H^{(\beta)})/(\theta_{\beta} - \theta_{\alpha}) =$$

$$= \beta (h_H^{+(\alpha)} - h_H^{+(\beta)})/(\theta_{\beta} - \theta_{\alpha}),$$
(4)

где величина $\Delta_{\beta\to\alpha}$ соответствует относительной разности удельных энтальпий решеточного H(D)газа на границах гомогенных фаз $\theta_{\alpha}(T)$, $\theta_{\beta}(T)$ [1] $h_{H}^{(x)}(T) \equiv h_{H}^{st}(T) + h_{H}^{+}(\theta_{x},T)$.

В рамках предложенной модели нами исследован изотопный эффект на примере PdH(D)_x. Рассмотрено влияние изотопного состава молекулярной (газовой) фазы водорода на параметры фазовых равновесий гидридов металлов и определены различия равновесных давлений разложения для гидрида и дейтерида палладия. Под изотопным эффектом будем понимать прежде всего различия давлений изотопов водорода на плато равнозначных изотерм растворимости в двухфазной области $\alpha+\beta(\alpha')$ или различия температур β-α-перехода на плато равнозначных изобар. Именно этим определяется возможность применения металлогидридных рабочих тел в системах разделения изотопов, очистки и обогащения водорода. Изотопные эффекты проявляются также в положениях границ α-, β-фаз, определяющих ширину плато (α+β) на РСТ-диаграммах для различных изотопов и в положениях критических точек распада этих неупорядоченных фаз. Данные параметры также исследованы в рамках предложенной модели фазовых равновесий.

Рассмотрим различия ФР палладия с двумя изотопами водорода – протием Н и дейтерием D, т.е. для гидрида PdH_x и дейтерида PdD_x. Для системы Pd–D при определении согласно (2) параметров W_I и W_2 значения n_M =4 (ГЦК–решетка, О–междоузлия), c_s =0,6 [5] и, конечно, v_0 – те же, что и для Pd–H. Различия в энергиях взаимодействия (D-D) по сравнению с энергией взаимодействия Н-атомов в матрице Pd составляют по данным [4] около 3%. Примем, что ответственная за это различие энергий комбинация $(E_1 \sigma_1^3)_D = 0.97 (E_1 \sigma_1^3)_H$. Это определяет в первую очередь различие значений критических точек α-βперехода, которое у дейтерида палладия меньше. Однако само наличие «обратного» изотопного эффекта для палладиевых систем (более высокие для дейтерида критическое давление и давление сорбции-десорбции) определяется другими факторами, изложенными ниже. Учитывая, что расширение палладиевой решетки при растворении в ней дейтерия примерно на 5% больше расширения, вызванного водородом [4], примем $\alpha_D = 1,05 \alpha_H = 0,20$, что дает для комбинации $\alpha c_s = 0, 12$.

С учетом этого получены расчетные значения критических параметров α-β-перехода в системах:

Рd-H: $\theta_c^{(H)} = 0,433 (c_c^{(H)} = 0,26)$ и $T_{-}^{(H)} = 572,86$ К $(t_{-}^{(H)} = 299,71 \,^{0}$ С при экспериментальных значениях (292±2) °С [4, 5], и 295,5 [6]); Pd-D: $\theta_c^{(D)} = 0,4320 (c_c^{(D)} = 0,2592)$ и $T_{-}^{(D)} = 552,72$ К $(t_{-}^{(D)} = 279,57 \,^{0}$ С при экспериментальном значении 276 °С [4]).

Таким образом, кривая распада дейтерида несколько сдвинута влево по сравнению с аналогичной кривой для гидрида Pd [3].

Рассчитанные по правилу Максвелла [2] границы областей α - и β -фаз Pd–H и Pd–D в интервале температур 0 °C – $t_c^{(H,D)}$ (рис. 1) определяют протяженность двухфазной (α + β)-области. Для гидрида она оказывается, при равных температурах, более широкой, по сравнению с дейтеридом, вследствие различий критических температур $T_c^{(H)}$ и $T_c^{(D)}$. Расчетное значение этого различия $\delta T_c^{(H-D)} \cong 20 K$ согласуется с экспериментальной разностью – от 16 до 19 K по различным источникам для $T_c^{(H)}$ [4–6] и $T_c^{(D)}$

Рис. 1. Кривые распада гомогенных фаз гидрида и дейтерида палладия на неупорядоченные α– и β-фазы: 1,2 – расчет;, значки – эксперимент [5]

Воросы атомной науки и техники. 2006. № 4. Серия: Физика радиационных повреждений и радиационное материаловедение (89), с. 235-238. Существуют различные экспериментальные данные о РСТ-равновесиях в системе Рd–D [3-7]. Нас будут интересовать результаты, полученные из измерений давления десорбции β -фазы (наиболее приближенного к равновесному давлению на (α + β)-плато), проведенных на одном экспериментальном оборудовании как для Pd–D, так и для Pd–H. Для экспериментальных значений изотопного эффекта, т.е. отношения $P_{D_2}^{(PL)} / P_{H_2}^{(PL)}$, это позволит избежать вклада погрешностей, обусловленных неизбежными систематическими ошибками различных методик измерений. В отдельных температурных интервалах такие данные получены Вике и др. [7] (-78... +175 °C), Лессером и др. [8] (35 ... 125 °C) и Гиллеспи и др. [7] (200 °C ... t_c).

В работе [3] приведены полученные расчетным путем для Pd–H средние значения $\overline{\Delta H}_{\beta \to \alpha}^{(H)}$ и $\overline{\Delta S}_{\beta \to \alpha}^{(H)}$, которые сравниваются с имеющимися в литературе опытными данными. Нашими задачами являются:

– получение для Pd–D значений $\overline{\Delta H}^{(D)}_{\beta \to \alpha}$ и $\overline{\Delta S}^{(D)}_{\beta \to \alpha}$, пригодных для всего интервала 0 °C ...

 t_c (280 °C), наиболее важного в практическом отношении;

последующее сравнение расчетной температурной зависимости P_{D2}^(PL) / P_{H2}^(PL) с надежными опытными данными [7, 8].

Указанная в [3] процедура усреднения функций по рабочему температурному интервалу 0...280 °C для Pd–D может быть проведена следующим образом. Согласно (3) и (4) равновесное давление β-α-перехода можно определить согласно

$$\ln P_{D_2}^{(PL)}(T) = - \left[\frac{G_{D_2}^0(T)}{RT} + 4\Delta_{\beta \to \alpha}^{(D)}(T) \right], \qquad (5)$$

где $G_{D_2}^0$ – энергия Гиббса молекулярного дейтерия в стандартном идеально-газовом состоянии. При расчете согласно (5) равновесного давления D₂ можно в простейшем случае исходить из значений идеально-газовых функций в средней точке интервала $\bar{t} = 140 \ ^{0}\text{C}$: $G_{D_2}^0(\bar{t}) = H_{D_2}^0(\bar{t}) - \overline{T}S_{D_2}^0(\bar{t}) = -51,816$ кДж/моль D₂ [9] и использовать среднее по интервали лу (0 °C ... t_c) значение разности $\overline{\Delta}_{\beta \to \alpha}^{(D)} = 3,52$.

Переходя к традиционному вант-гоффовскому виду (3) уравнения для равновесного давления, получим для «средних» (по рабочему интервалу Т) значений энтальпии и энтропии разложения β-фазы Pd–D выражения:

$$\overline{\Delta H}_{\beta \to \alpha}^{(D)} = H_{D_2}^0(\bar{t}) + 2R\overline{T}\overline{\Delta}_{\beta \to \alpha}^{(D)} ;$$

$$\overline{\Delta S}_{\beta \to \alpha}^{(D)} = S_{D_2}^0(\bar{t}) + 2R\overline{T}\overline{\Delta}_{\beta \to \alpha}^{(D)} .$$
(6)

При $\overline{t} = 140$ ⁰C согласно [9] $H_{D_2}^0(\overline{t}) = 11,930$ кДж/моль D₂; $S_{D_2}^0(\overline{t}) = 154,29$ Дж/(К·моль D₂), что дает $\overline{\Delta H}_{\beta \to \alpha}^{(D)} = 36,11$ кДж/моль D₂; $\overline{\Delta S}_{\beta \to \alpha}^{(D)} = 95,76$ Дж/(К·моль D₂).

На рис. 1 полученные температурные зависимости давлений разложения β -фаз дейтерида и гидрида палладия сравниваются между собой и с имеющимися опытными данными, приведенными выше. Расчетная прямая *I* впервые в широком практически значимом диапазоне – от 0 °C до критической точки распада (~280 °C) – описывает положение плато давления на фазовой диаграмме Pd–D. Соответствующие экспериментальные значения энтальпии и энтропии разложения β -фазы Pd–D, отождествляемые с параметрами уравнения Вант–Гоффа (3), составляют:

Δ $H^{(D)}_{\beta \to \alpha}$, (кДж/ моль D₂): 37,14 [7] (-78... +175 °C), 35,4 [8] (35...125 °C), 32,47 [7] (200...276 °C);

$$\Delta S^{(D)}_{\beta \to \alpha}$$
, (Дж/ К·моль D₂): 98,01 [7](-78... +175

С), 93,4 [8] (35... 125 °С), 88,70 [7] (200 ... 276 °С). Расчетное критическое давление $P_{D_2}^{(c)} = P_{D_2}^{(PL)}(T_c) = 38,81$ атм при экспериментальных значениях около 35 атм [4, 7].

Согласно (3) для отношения равновесных давлений разложения β-фаз дейтерида и гидрида получим:

$$\ln(P_{D_2}^{(PL)} / P_{H_2}^{(PL)}) = -\frac{\delta (\Delta H_{\beta \to \alpha})^{D-H}}{RT} + \frac{\delta (\Delta S_{\beta \to \alpha})^{D-H}}{R},$$
(7)

где $\delta (\Delta A_{\beta \to \alpha})^{D-H} = \Delta A_{\beta \to \alpha}^{(D)} - \Delta A_{\beta \to \alpha}^{(H)}$ – разность термодинамических параметров разложения β -фаз Pd– D и Pd–H. Используя приведенные выше средние параметры $\overline{\Delta H}_{\beta \to \alpha}^{(D)}$, $\overline{\Delta S}_{\beta \to \alpha}^{(D)}$ и соответствующие параметры для гидридных фаз $\overline{\Delta H}_{\beta \to \alpha}^{(H)} = 40,51$ кДж/моль H₂, $\overline{\Delta S}_{\beta \to \alpha}^{(H)} = 96,34$ Дж/(К·/моль H₂) [3], можно получить простое уравнение для отношения $P_{D_2}^{(PL)} / P_{H_2}^{(PL)}$:

$$P_{D_2}^{(PL)} / P_{H_2}^{(PL)} = \exp(\frac{528,7}{T} - 0,07).$$
 (8)

Графики для расчетной зависимости (8) приведены на рис. 2.

Полученные результаты показывают, что наблюдается удовлетворительное согласие с экспериментом в пересекающихся диапазонах состояний не только для давления разложения β-фазы дейтерида (см. рис. 1), но и для собственно изотопного эффекта – отношения давлений разложения дейтерида и гидрида.

Это подтверждает справедливость сделанных выше основных предположений и работоспособ-

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2006. № 4.

Серия: Физика радиационных повреждений и радиационное материаловедение (89), с. 235-238.

ность построенной математической модели ФР в металлогидридах переходных металлов в области неупорядоченных фаз.

Рис. 2. Логарифм давления разложения β-фазы систем Pd–H и Pd–D как функция обратной температуры

ЛИТЕРАТУРА

1.V.S. Marinin, K.R. Umerenkova, Yu.F. Shmalko, M.P. Lobko, M.V. Lototsky. Interacting lattice gas

model for hydrogen subsystem of metal hydrides //Functional materials. 2002, v. 9, N3, p. 395-401.

2.V.S. Marinin, Yu.F. Shmalko, K.R. Umerenkova, M.V. Lototsky, M.P. Lobko. Critical separation point of disordered metal hydride phases in the model of interacting lattice gas *//Functional materials*. 2002, v. 9, N4, p. 587–594.

3.В.С. Маринин, К.Р. Умеренкова, Ю.Ф. Шмалько. Моделирование РСТ-диаграмм металлогидридов в области неупорядоченных фаз //Вопросы атомной науки и техники. Серия «Физика радиационных повреждений и радиационное материаловедение» (84). 2003, № 6, с. 40–46.

4.*Водород в металлах* /Под ред. Г. Алефельда и И. Фелькля (в 2-х т.). М.: «Мир», 1981. Т. 1, гл. 3, 5; т. 2, гл. 2–4.

5.Е. Фромм, Е. Гебхардт. *Газы и углерод в металлах*. М.: «Металлургия», 1980, 712 с.

6.Ю.В. Левинский. *Диаграммы состояния металлов* с газами. М.: «Металлургия», 1975, 295 с.

7.W.M. Mueller, J.P. Blackledge, G.G. Libowitz. *Metal hydrides*. New York–London: Academic Press, 1968. Chap. 12-7.

8.R. Lässer, K. – H. Klatt. Solubility of Hydrogen isotopes in palladium //*Phys. Rev. (B).* 1983, v. 28, N2, p. 748–758.

9. Термодинамические свойства индивидуальных веществ /Под ред. В.П. Глушко (в 2-х т.). Т. 1. М.: «Наука», 1978, 342 с.

ФАЗОВІ РІВНОВАГИ В ГІДРИДАХ І ДЕЙТЕРИДАХ ПЕРЕХІДНИХ МЕТАЛІВ У МОДЕЛІ НЕІДЕАЛЬНОГО РЕШІТОЧНОГО ГАЗУ

В.С. Маринін, Ю.Ф. Шмалько, К.Р. Умеренкова

Модифікована схема термодинамічної теорії збурень застосована для моделювання фазових рівноваг в системах "перехідний метал-ізотопи водню". Встановлено зв'язок між макроскопічними характеристиками розчинів проникнення Pd-H(D)_x, зокрема параметрами фазових переходів, і мікроскопічними (атомними) характеристиками водневої підсистеми та решітки металу.

THE PHASE EQUILIBRIUM IN THE HYDRIDES AND DEUTERIDES OF TRANSITIVE METALS IN MODEL OF THE NONIDEAL LATTICE GASE

V.S. Marinin, Yu.F. Shmal'ko, K.R. Umerenkova

The modified thermodynamic perturbation theory is applied for modeling phase equilibrium in systems "transitive metal - isotopes of hydrogen". Intercoupling between macroscopically characteristics of solutions of intrusion Pd-H (D) $_x$, in particular, parameters of phase transitions and microscopic (nuclear) characteristics of a hydrogen subsystem as well as a lattice metal.