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The Thomson scattering of a plane monochromatic electromagnetic wave by a linear chain of periodically spaced 
charged particles is investigated theoretically. It is obtained a functional dependence for the total power and angular 
distribution of this radiation as a function of the number of the charged particles and the distance between them. The 
coherence effects for a linear chain of pointlike bunches are discussed.
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1. INTRODUCTION 

Investigations  of  the  electromagnetic  radiation 
coherence  from  the  charged  particles  bunches  is  of 
considerable interest for a number of plasma and beam 
physics  applications  (see,  e.g.  [1,2]).  These 
investigations are extremely impotent for the researches 
directed on the short wavelength coherent radiation in 
free  –  electron  lasers  (FEL),  which  are  expected 
generate  coherent  electromagnetic  radiation  at 
wavelengths on the order of tens of angstroms [3,4]. For 
a number of charged particles bunches, the dependence 
of the total intensity of scattered electromagnetic wave 
(EMW)  on  character  distance  between  scatterers  in 
bunch has been investigated in [5-7]. In this paper the 
results of investigations of the angular distribution and 
the  total  intensity  of  radiation  for  a  linear  charged 
particles chain under the Thomson scattering of EMW 
are presented. 

2. FORMULATION OF THE PROBLEM
As  a  model  of  the  bunch  configuration  let  us 

consider a linear chain of a finite number of identical 
charged  particles  scattering  the  plane  monochromatic 
linearly polarized EMW. The main physical reasons for 
the  choice  of  this  model  are  follows.  The  Thomson 
scattering  of  EMW  by  charged  particles  is  the 
fundamental  physical  process  of  electromagnetic  field 
emission.  Secondly,  for  the  ultra–relativistic  beam 
energy range a plane undulator  field  in the beam rest 
frame  is  similar  to  the  EMW.  On  another  hand,  by 
varying the distance between point charge-radiators and 
their total number can be control the level of radiation 
coherence by the individual bunch, and by the chain of 
pointlike bunches as well. 

Let us consider a linear chain of N identical charged 
particles, with mass  m and charge  q.  In this chain the 
distance  between two neighboring  particles  is  d.  The 
plane monochromatic EMW with the frequency  ω,  the 
wave  number  k=ω/c and  the  amplitude  E propagates 
along  the  OZ axis  (x=y=0),  where  the  scatterers  are 
situated in:  Eext(r,t)=ex  E cos(ωt–kz).  It  is necessary to 

determine the  total  radiation intensity of  the scattered 
radiation and angular distribution of the energy flux of 
this radiation as a function of the number of scatterers N 
and the period of their sequence d. 

The  angular  distribution  of  the  energy flux of  the 
scattered radiation and total  intensity of  this radiation 
will be calculated from the formula for dipole radiation 
of charges in its  wave zone [8].  Indeed,  at  a  distance 

( )r x y z= + +2 2 2 1 2
,  considerably  larger  than  the 

bunch  linear  dimension  (r>>LN=(N–1)d),  the  energy 
flux density of the radiation into the solid angle element 
dΩ=sinϑdϑdϕ  can be expressed in terms of the total 
dipole momentum of all charges of the bunch D(t): 
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Here  ex is  the  unit  vector  along  the  OX axis, 

( )a qE m= ω 2  is the amplitude of particle oscillations 

in the EMW field, ϑ is the angle between the unit vector 
n toward the observation point and positive direction of 
the  OZ axis,  n=r/r,  zs is the longitudinal coordinate of 
the charge of the number s, the angular bracket mean a 
time average over the field period T=2π/ω, t′(r)=t–r/c is 
the retarded time. 

Angular  distribution  of  the  radiation.  In  the 
considered model  of  the bunch the right-hand side of 
Eq. (1) is a rather simple function of the external bunch 
parameters: 
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Here  ( ) ( )dI inc
N ϑ ,ϕ  is  the  angular  distribution  of 

intensity of incoherent  radiation of the bunch in solid 

angle  element  dΩ,  I
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the intensity of individual charge radiation,  θ=kd is the 
dimensionless period of scatterer sequence in the chain, 
KN(ϑ;θ) is the bunch coherence factor of the radiation 
into the given solid angle element dΩ . 

Performing the summation over the charge number s 
in the right–hand side of the Eq. (3) we can obtain the 
follow expression for the coherence factor: 
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where µ(ϑ;θ)=θ(1–cosϑ)/2, cosecz=1/sinz. 
Total power. Integrating the right–hand side (2) over 

the  total  solid  angle  (0≤ϑ≤π;  0≤ϕ≤2π)  gives  the 
following  explicit  formula  for  the  total  radiation 
intensity of the bunch considered [7]: 

( ) ( ) ( ) ( )I K Itot N
tot

inc
Nθ θ= , ( )I N Iinc

N = 1 , (6)

( ) ( )K

s
N

N
tot

s s
s

s
s

N
s

s

θ

ρ ρ
ρ

ρ ρ
ρ

= +

+ −





+ −


















=

∑

1

3 1 1

1
2cos sin cos . (7)

Here we expressed the total radiation intensity Itot(θ) 
in terms of the total incoherent radiation intensity of the 
charges ( )I inc

N , ρs=θs. In this way the coherence factor for 
the total radiation intensity of the bunch defined by Eq. 
(7), as in [7].

3. RESULTS AND DISCUSSION
Eqs.  (2)–(7)  present  the  complete  solution  of  the 

problem in the explicit analytical form. The last of them 
generalizes  the  asymptotic  results  of  the  classical 
Thomson  scattering  theory  in  case  of  the  idealized 
model  of  the  bunch  configuration  considered  (linear 
periodic  chain of  scatterers).  In  the particular  case of 
two  scatterers  (N=2),  these  formulae  are  in  good 
agreement with those obtained earlier in [5]. In a theory 
and applications of the microwave electronics based on 
bremsstrahlung radiation the functional dependencies of 
coherence  factor  on  the  external  bunch  parameters  N 
and  θ are  of  fundamental  interest.  Below  we  will 
describe these dependencies in more detail using their 
analytical  asymptotics  and  graphs  (calculated  for  the 
particular values of scatterers number N).

Analytical asymptotics. For small and large distances 
between charges from the Eq.  (7)  follow the classical 
results [8]. Indeed, for small bunch dimensions ( (N–1)θ 
<<1 ) its right–hand side takes the form: 

( ) ( ) ( )[ ]K N NN
tot θ θ= − −1 7 1 602 2 .

In  the  alternative  limiting case  (when the  distance 
between  neighboring  scatterers  d is  greater  than 
wavelength  λ=2π/k, i.e.  θ>>1) the overall contribution 
of coherent interaction between charges-scatterers in the 
bunch 
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is of the order θ–1<<1 .
For  the  values  of  the  period  d,  multiplied  to  half 

wave  length  (θ=πs;  s=1,2,3,..),  this  contribution 
decreases inversely to the square of this period:
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Here  C=0,577...  is  the  Euler's  constant;  ψ(z)  is  Psi 
(Digamma)  function;  ψ(z)≡Γ′(z)/Γ(z);  Γ(z) is the 
gamma function and ψ′(z)≡dψ/dz. 

For  the  great  numbers  N (N>>1)  the  last  formula 
takes the form δN(πs)=1/(2s2) 

Differentiating the right-hand side of the Eq. (7) over 
θ we can see, that at points  θ=θs=πs the derivative  δN

′  

(θ) is positive and increases linearly with the number of 
particles  N and decreases in inversely proportional  to 
the distance between them θs: δN

′ (θs)= 3(N–1)/(2θs). 
The functional dependence of coherence factor in the 

angular  distribution  of  radiation  ΚN(ϑ;θ)  on  the  ϑ is 
more complicated, including two external parameters – 
θ and  N  (see  (5)).  Nevertheless,  some  general 
characteristics  of  this  dependence  can  be  obtained  in 
analytical  form directly  from the  Eq. (5).  In  fact,  for 
small bunch dimensions (LN << 1) the coherence factor 
is at absolute maximum ΚN(ϑ;θ) = N for all values of the 
angle ϑ. For a period of charge locations θ≈π the bunch 
radiation anisotropy appears: in the directions  ϑ and  ϑ
* ≡ π – ϑ the values of coherence factor begin to differ 
from  one  another:  ΚN(ϑ*;θ)  ≠ ΚN(ϑ;θ).  Then  the 
distances  between  the  charges  are  greater  than 
wavelength of scattered radiation (θ>2π), the coherence 
factor ΚN(ϑ;θ) becomes substantially a non-monotonous 
function of the angle ϑ. In particular, for the directions 
ϑs , imposed by the equation 

( )θ π1 2− =cos ϑ n n  ; n=0,1,2,3,...,[θ/π], (10)

this factor is at its maximum 

( )K NN nϑ ;θ = . (11)

Here the square bracket  means the integer  part  of the 
bracket number. 

The half-widths of these extreme (in the angle ϑ) are 
inversely proportional to the bunch length LN :

∆ ϑ ≈ −



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−
θ N 2

1
1 . (12)

The  exceptions  are  the  angles  ϑ=0  and  ϑ=π for 
distances between charges, multiplied to half-length of 
the  scattered  wave:  for  them  the  half-widths  of  the 
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extrema decrease with increasing of the bunch length in 
inverse proportion to the square root of this length:

∆ ϑ ≈ −





−
θ N 2

1 2
1 .

It  should  be  noted  that  the  coherence  factor 
( )K N

tot( ) θ  drops  quickly  with  increase  of  the  bunch 
dimension  (the  graphs  for  the  coherence  factor 

( )K N
tot( ) θ  as function of the number of scatterers N and 

the  distance  between  them  d are  presented  in  [7]). 
Corresponding  extreme  in  bremsstrahlung  radiation 
angular  spectrum power  of  the  bunch  (see  Eqs. (10), 
(11)  and figure)  describe physically only the result of 
the  coherent  summation  of  bremsstrahlung  radiation 
fields of individual scatterers phased by the regular field 
of scattered wave. In the simplest case N=2 this effect 
was investigated in details in [5]. 

The numerical calculations of the function  ΚN(ϑ;θ) 
have been carried out. 

Figure  shows  the  coherence  factor  ΚN(ϑ;θ)  as  a 
function of the angle  ϑ for two particular values of the 
parameter θ for the number of scatterers N=6. 
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Coherence factor ΚN(ϑ;θ) as a function of the angle ϑ 
for the parameters N=6, θ=4π/3 (a), 2π (b)

Using  the  formulae  presented  above  one  can 
describe  the  coherence  effects  in  periodic  chain  of 
pointlike bunches separated by arbitrary distances. Let 

N bunches, each of them contains M charged particles, 
situated along the OZ axis so that the distance between 
each  two neighbors  bunches  in  the  chain  is  d.  Then, 
make  the  substitution  q  for  Mq  and  m  for  Mm  in 
equation (4), and using Eqs. (2), (6) we obtain following 
expressions for angular distribution of energy flux of the 
scattered radiation: 

( ) ( ) ( ) ( )dI M K dItot N inc
M Nϑ ϑ ϑ, ; ; ,ϕ θ θ ϕ= , (13)

and total intensity of this radiation

( ) ( ) ( ) ( )I M K Itot N
tot

inc
M Nθ θ= , (14)

( ) ( ) ( ) ( )dI M dIinc
M N

inc
Nϑ ϑ, ,ϕ ϕ= , ( ) ( )I M Iinc

M N
inc

N= ,

were ( ) ( )dI inc
M N ϑ ,ϕ ,  ( )I inc

M N  are angular distribution and 
total intensity of incoherent radiation by all charges in 
the  chain,  respectively.  The  functions  ΚN(ϑ;θ)  and 

( )K N
tot( ) θ  in this equations have the form (3), (5) and (7). 
It is show from Eqs. (13), (14) that coherence factors 

in  total  intensity  ( ) ( )KM N
tot θ  and  angular  distribution 

( )K M N ϑ ,θ  for the considered periodic linear chain of 
pointlike bunches of charged particles may be write as 

( ) ( ) ( ) ( )K M KM N
tot

N
totθ θ= , ( ) ( )K M KM N Nϑ ϑ, ,θ θ= .

Thus,  Eqs. (13)  and  (14)  with  expressions  for 
coherence factors (5)-(7) define the total intensity of the 
scattered  radiation  and  angular  distribution  of  energy 
flux of this radiation under the Thomson scattering of 
EMW by periodic chain of pointlike bunches. 
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