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A simple way to determine the channel of scattering of the Hubbard chain electrons with additional quantum 
number, which means the orbital or band characteristic, is demonstrated on the integrable 1D modified Hubbard 
model.  Exact  solutions  are  obtained  for  each  scattering  channel  of  the  electrons.  The  preferable  channel  is 
determined  by  means  of  numerical  calculations  of  the  ground-state  energies  and  comparison  its  values.  The 
dependence of the scattering matrices on the parameters of Coulomb, orbital (band), and spin interactions gives the 
possibility to present the properties of the system considered in different ranges (reasonable in physics sense) of 
parameters which correspond to the electron coupling. The ratio between magnetic susceptibility and heat capacity 
of the model is presented.

PACS: 71.10.Fd; 71.10.Pm

1. INTRODUCTION
Michel Gaudin admitted that the expression "exactly 

soluble  model"  means  no  more  than  suitable 
mathematical expression for some physical value or at 
least a possibility to reduce the problem to the problem, 
which  can  be  considered  in  a  frame  of  classical 
analyses. These solutions illustrate common principles 
and permit to control the approximations of realistic and 
sophisticated models. Therefore a way to sophistication 
of  initially  exactly  solved  model  [1]  aims  both  the 
mathematical beauty and physical reality. 

The interest to the exactly solvable Hubbard's chain 
of  the electrons is  high especially.  It  is  stipulated for 
modern  achievements  both  as  the  fundamental 
investigations of  the nature of  the super  conductivity, 
and  as  the  direct  applications  of  these  investigations. 
For example strong correlations in solids are effectively 
described by the Hubbard's model. The real objects for 
this  model  in  condensed  matter  are  narrow-zone 
transition metals. Hubbard's model describes effectively 
the correlations between spin and Coulomb interactions 
in these solids.

It  is  well  known  that  at  the  weak  Coulomb 
interaction  limit  Hubbard's  model  describes  the  non-
localized  spin  state  and  Fermi-liquid  behavior  of  the 
electron  system.  At  the  limit  of  strong  Coulomb 
interaction  Hubbard's  model  describes  the  state  of 
localized magnetic moments of an electrons. Hence the 
situation which arisen in the case of intermediate ratio 
between the parameters of  Coulomb interaction and a 
hopping  integral  is  most  interesting  from  a  physical 
point of view. In this case it is possible to describe the 
phenomena of metal-dielectric phase transition, arising 
of  local  magnetic  moments,  correlation  between  the 
charge  carriers  and  magnetic  ordering,  etc.  Exact 
solutions of the based on the Hubbard's model problems 
are promising in these aspects.

The classical exact solution of the Hubbard's chain 
of electrons [1] does not describe the effective attraction 
of the electrons. Therefore it is impossible to construct 
the mechanism of the super conductivity in the frame of 
the  model  [1].  Some  modifications  of  the  Hubbard's 
model  are  presented  in  a  number  of  works.  The 

modifications,  which are most  interesting for physical 
interpretations  permit  to  change  effective  constant  of 
Coulomb interaction.

The effective attraction between the electrons arises 
in  the  many-band  Hubbard's  model,  which  was 
considered the two-band Fermi-gas model with square 
dispersion and δ-like potential. It takes into account the 
orbital and spin interactions between bands and neglects 
the Coulomb one.

The most interesting field of the applications of the 
integrable  models  results  is  high-temperature 
superconductivity investigations.

The models [2, 3] permit to describe more physical 
properties than the initial exactly solved model [1]. In 
the work [3] exact solution of fermionic gas two-bands 
model  describing  a  parabolic  band  of  conducting 
electrons  and  a  band  of  local  pairs  interacting via  δ-
function was presented.

Listed  above modifications  of  the  Hubbard  model 
got  hopeful  results  on  the  way  of  description  of 
effective attraction in the electron systems. Therefore it 
is  interesting  to  investigate  other  many  channel 
modifications of Hubbard chain of electrons.

The effective attraction between the electrons arises in 
the many-band Hubbard's model as it was admitted in the 
work  [2],  which  the  two-band  Fermi-gas  with  square 
dispersion and delta-like potential was considered. It takes 
into  account  the  orbital  and  spin  interactions  between 
bands and neglects the Coulomb one. The exact solutions 
were presented in the form of the tensor multiplication of 
the spin and orbital two-particles scattering matrixes. This 
model permits to describe more physical properties than 
the model [1]. The Hubbard's chain of the electrons with 
the  Coulomb,  and  orbital,  and  spin  interactions  is 
considered in the work presented.

Below  the  Hubbard's  chain  of  the  electrons  with 
Coulomb,  orbital,  and  spin  interactions  is  considered. 
The  exact  solutions  are  obtained  by  means  of  the 
coordinate  Bethe-anzatz  method  on  anti-symmetrical 
wave functions.

2. THE MODEL AND SOLUTION
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Modified on  the  case  of  additional  type  of  the 
interaction (orbital or band) Hubbard chain Hamiltonian 
we shall consider in the form:
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Here Na +1 denotes the number of the sites;  +
σnmc  and 

σnmc  denotes operators of the creation and annihilation 
of electrons in the n-th site of the  m-th band (m=1,2) 
with z-component of the spin σ (σ=↑,↓);  value of the 
hopping integral we put equal to 1. The problem of the 
integrability  of  the  Hamiltonian  (1)  is  complicated  in 
comparison with the problem [1] because a degeneracy 
on the second quantum number. Common approach to 
solve this problem leads to necessity to introduce new 
system of quantum characteristics, which are analogous 
to that of charge and spin rapidities, and a construction 
of  three-particle  system of  quantum equations,  which 
would describe the excitations of the system considered. 
It is way to get the wave function of the system (1) by 
the coordinate Bethe-anzatz in this case using two-particle 
scattering matrices. The procedure is described near.

We  have  found  the  solution  of  the  Schrödinger 
equation for two-particle wave function
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Here permutation operators (Pm)2=1, Pm= − P, and E is 
the energy of the system (see below). The solution of 
this  equation  gives  the  following  cases  of  exact 
solubility of  the problem and the following scattering 
matrices, (a) the case U=b
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and (b) the case U= −b
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Here Pa
ij denotes the permutation operator of the i-th 

and j-th electrons with the spin σ  in the case when a=
σ ,  and is the number of the band (orbital number)  m, 
when  a=m.  All  four matrices satisfy the Yang-Baxter 
triangle equations; therefore we can declare the model is 
integrable. Energy of the considered system is

E= − 2(cosk1+cosk2). 
The whole system wave function is:
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Here  xQj  are  the  coordinates  of  electrons,  xQ1<xQ2<…
<xQN<L,  L is  the length of the chain;  Q is  permutation 
operator  of  the symbols  {1,2,…Ne}.  Construction of  the 
transfer matrix from the scattering matrices (Eqs. (2-3)), and 
calculation of the eigenvalues of this matrix, which coincide 
with  the  eigenvalues  of  the  Hamiltonian  (1),  reduce  the 
problem to the diagonalization of transfer matrix.

Realization  of  the  scattering  channel  in  our 
consideration  means  that  the  quantum number  of  the 
other  one  is  fixed.  In  other  words  the  variables  will 
divide. Each one of the equations (2) and (3) describe 
the special channel of scattering. It is clear, that real one 
will be determined by the lowest value of the ground-
state energy. Therefore to calculate it we have to get the 
Bethe equations. To calculate the ground-state energies 
we get the Bethe equations as:
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Here   denotes a rapidities;  Ne denotes the number of 
the electrons; M denotes the number of electrons in the 
spin state “down” [2, 3].

We get the system of equations, which describes the 
densities  of  a distribution of  wave numbers  (k),  and 
spin rapidities  () in the continuum limit. Eqs. (4) are 
common  for  all  four  channels  of  a  scattering.  They 
describe the density of the rapidity distribution and may 
be written as:
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Here  the  limits  of  the  integration  in  the  case  of  half 
filled chain (Na  =Ne) are determined by the conditions 
[1] and are equal toQ, B in the case of ground state, 
as  it  follows from the  Lieb-Mattis  theorem. We shall 
consider this case.

For the functions of the density of the momentum 
distribution we get:
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Here we denote   
 the densities, which are the orbital 

ones if  =m, a=1 and if =, a=1, the spin ones in the 
case when U=b, and =m, , a=2, in the case when U=−
b correspondingly.

At  numerical  calculation  of  the  energies  of  the 
ground state we get the following result:

− in the case when the scattering is described by 
the Eqs. (2) the spin channel is preferable;

− in the case when the scattering is described by 
the Eqs. (3) the orbital channel is preferable.

3. THERMODYNAMIC PROPERTIES OF 
THE MODEL

Let us consider the thermodynamic properties of 
the model considered in the case when the spin channel 
of  a  scattering  is  realized,  namely  the  scattering 
matrices  of  Eqs. (2).  Thermodynamic  potential  of  the 
system will be as:
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where  n(E) = (1+exp{E/T})−1  denotes the Fermi-Dirac 
distribution function of the electrons with the energy E, 
temperature T; 0(k), 0() are the distribution functions 
on the rapidities  and momentum k consequently when 
Na=Ne and T=0:
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Here  s()  =  (4bcoshb)−1,  and  R(x)  is  the  Fourier 
transformed  function  R()  =  (1+exp{2b})−1. 
Functions  K(k)  and  )(λε i  satisfies  the  set  of  the 
integral  equations  which  appears  in  the  classical 
Hubbard problem [4] (i=1,2):
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Here  H denotes  the  amplitude  of  external  magnetic 
field. Boundary conditions for this case we choose as:

H
i

i
i 2)(lim =→ ∞

λε
; )(0 λε = − .

Here symbol  denotes the convolution:
s f = dps(−p)f(p).

In the limit of weak external magnetic field  H  0 
the magnetic susceptibility we get as:
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Here I0(a) = dkeasink(k), I1(a) = − (1/2)dkcoskeasink(k),
a = 4/NU and functions (k), (k) calculate from the well-
known procedure [1]. The result is
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where  HC is the heat capacity of the Heisenberg chain 
was presented in the work [5]. This capacity satisfy the 
following conditions in the case N=2:
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In our case minimal value of the number N=4 (when we 
have  two  orbits  or  bands).  Therefore  we  have  to 
consider 4 integral Bethe anzatz equations. But due to 
our approximation we may consider each channel of a 
scattering separately and use the above results.

Hence we can write
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4. CONCLUSIONS
Presented way of the separation of the channels of a 

scattering of Hubbard chain electrons model permits to 
reduce  effective  constant  of  Coulomb  interaction  in 
Hubbard's  model  due  to  the  consideration  of  orbital 
scattering channel of the electrons.

The modification of the Hubbard model on the case 
of  existing  in  the  system  of  the  strong  correlated 
electrons two channels of  a scattering gives the exact 
values  of  the modification parameter  b,  which makes 
the  model  Hamiltonian  integrable.  It  is  interesting  to 
admit that the region of integrability is defined by the 
equality of the values of a modification parameter and 
model Coulomb interaction.

Hence,  the  mechanisms  of  the  realization  of  the 
transitions  from  different  magnetic  states,  metal-
insulator  transition,  etc.,  in  1D  integrable  strong 
correlated  electron  quantum  systems,  which  are 
described  by  the  Hamiltonian  Eq. (1)  will  be 
determinate  by  the  parameters  of  4-fermionic 
interaction.
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