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The paper is a review of studies of integrability of the BCS Hamiltonian with discussion of some its integrable 
generalization which present an interest for a number of physical problems. 
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1. INTRODUCTION
In 1957 J. Bardeen, L.N. Cooper and J.R. Schrieffer 

have introduced the BCS Hamiltonian which was very 
successful  in  description  of  the  superconductivity.  In 
1958 N.N. Bogoljubov et al. proved an equivalence of 
the  BCS  Hamiltonian  to  the  quadratic  one  in  the 
thermodynamic  limit.  At  a  finite  number  of  particles 
R.W. Richardson (1965) proved an integrability of the 
BCS  Hamiltonian  [1]  and  M. Gaudin  (1976)  built  an 
appropriate  mathematical  theory  [2,3].  Recently  an 
interest  to  the  integrability  of  BCS  Hamiltonian  was 
renewed in connection with different applications. 

2. INTEGRABILITY OF THE BCS 
HAMILTONIAN

The BCS Hamiltonian is 

,
,

,
,

, ∑∑ ↑↓
+
↓

+
↑

+ −=
ji

jjiii
i

iiBCS ccccgccH σ
σ

σε

where  are  the  annihilation  and  creation  operators  of 
electrons.  In  this  Hamiltonian  the  pairing  interaction 
does not act on singly occupied levels. As a result we 
may study these levels separately.

By means of the operators
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which obey to the commutation relations we can present 
the BCS Hamiltonian in a form
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The BCS Hamiltonian has the integrals of motion [4]
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which commute with each other. The number of pairs N 
and  the  Hamiltonian BCSH  are  linear  and  quadratic 
forms of these integrals of motion respectively,
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3. THE GAUDIN ALGEBRA, THE 
RICHARDSON EQUATIONS, 

EIGENSTATES AND EIGENVALUES OF 
THE BCS HAMILTONIAN

1.  The  Gaudin  algebra.  Given  a  set  of  complex 
numbers  { }Ljj ,...,1, =ε  and  a  set  of  independent 

spin  operators  { }LjSSS z
jjj ,...,1,,, =−+ ,  satisfying 

the commutation relations
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we define the operator rational functions
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The operators )(ωαS  are the generators of the Gaudin 
algebra and obey to the commutation relations
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The Gaudin algebra is an infinitedimensional extension 
of the )2(sl  algebra.

We  construct  the  representation  of  the  Gaudin 
algebra, fixing the highest weight vector 0  by means 
of the following relations,

,00)( =+ ωS
and define the representation space as a linear hull of 
vectors
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with arbitrary N complex numbers .,...,1 Nωω
2.  The  generating  function  of  the  integrals  of 

motion.
The operator rational function 
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is a generating function of the integrals of motion of the 
BCS Hamiltonian since
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It is easy to prove that values of the operator )(ωF  at a 
different values of ω  commute with each other,
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We  can  prove  that  the  NN ωω ,...,1=  are 
eigenstates  of  the  operator  )(ωF  if  the  quantities 

Nωω ,...,1  satisfy the Richardson equations
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Eigenvalues of the )(ωF  are of the following form
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3. Eigenstates and eigenvalues of the BCSH .

The  function  NN ωω ,...,1=  with  parameters 

,,...,1 Nωω  satisfying the Richardson equation, is an 

eigenstate  of  integrals  of  motion  jR  with  the 
eigenvalue
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The same function NN ωω ,...,1=  with the same 

parameters  Nωω ,...,1  is  an  eigenstate  of  the 

Hamiltonian  BCSH  which is  a  quadratic  form of  the 

integrals  of  motion  jR .  In  order  to  calculate  the 

eigenvalues  of  the  BCSH  we  ought  to  put  the 
expressions for  eigenvalues of the integrals of motion 

jR  in the formula 
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We can calculate the eigenvalues of the BCSH  also by 
means  of  the  asymptotic  expansion  of  the  generating 
function )(ωF  at ,∞→ω
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Since  the  numbers  of  pairs  N and  the  Hamiltonian 

BCSH  are expressed in terms ,, )2()1( FF
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and  since  we  know  the  eigenvalues  of  the  operator 
)(ωF , we can obtain the following expression for the 

eigenvalues NE  of the BCS Hamiltonian,
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4. SOLUTIONS OF THE RICHARDSON 
EQUATIONS. CLASSIFICATION OF 

EIGENSTATTES
The Richardson equations 
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admit different interpretations.
We  can  interpret  the  Richardson  equations  as 

conditions of local equilibrium for a set of charges on a 
plane  (actually  lines  of  charge  perpendicular  to  the 
plane)  which interact  with each  other  by means of  a 
logarithmic potential and with a uniform external field. 
Indeed if we assume that there are the N free charges of 
unit  strength  at  points  Nzz ,...,1  and  the  L fixed 

charges with a charge of strength jb  located at a point 

ja  of the real axis where  Lj ,...,1=  and a uniform 

external field  g/1−  then the energy of such a system 
of charges is

88
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These  charges  are  in  equilibrium  if  their  energy  is 
stationary with respect  to  coordinates  of  free charges, 
i.e.
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These  equations  coincide  with  the  Richardson 
equations  if  we  put  Nz ,...,1, == αω αα  and 
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The energy  ( )NzzW ,...,1  of the  N free charges on a 
plane does not have a global extremum since it is not 
bounded from above and below but it has a number of 
local extrema described by solutions of the Richardson 
equations.These solutions of the Richardson equations 
correspond  different  quantum  states  of  the  BCS 
Hamiltonian. Since
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we  may  label  these  quantum  states  by  the  quantum 
numbers  of  the  free  Hamiltonian  corresponding  to 

.0=g In such a way we come to conclusion that there 

are N
LC  states with N pairs for the BCS Hamiltonian.

We can interpret the Richardson equations also as the 
equations for zeros of a polynomial satisfying a special 
ordinary differential equation of the second order with 
polynomial coefficients. To this end let us consider the 
polynomial
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If  we  insert  this  expression  into  the  Richardson 
equations we obtain 
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Since  the  polynomial  ( )zf  of  the  order  N and  the 
polynomial
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of  the  order  N+L-1 have  the  same  zeros 
Nz ,...,1, =αα  there  must  exist  such  a  polynomial 

( )zC  of the order L-1 that 

( ) ( ) ( )

( ) ( ) .0

12
11

=

+











′










+

−
−′′− ∑∏

==

zfzC

zf
gz

s
zfz

L

j j

j
L

k
k ε

ε

Therefore  the  polynomial  ( )zf  with  zeros 

Nz ,...,1, =αα  must  satisfy  the  written  above 
differential equation of the second order 

( ) ( ) ( ) ( ) ( ) ( ) 0=+′+′′ zfzCzfzBzfzA
with polynomial coefficients ( ) ( ) ( ).,, zCzBzA  There are 
several  polynomials  ( )zC  with this property and their 
number  is  equal  to  the  number  of  solutions  of  the 
Richardson equations.
A dependence of the quantities N,...,1, =αω α  on the 
interaction  constant  ∞<≤ gg 0,  has  the  following 
properties:

A. If there exist such a 00 ≠g  that 
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neighborhood  ;0gg −  4)  0g  is  a  solution  of  the 
algebraic equation of the K-th degree.

B. Ata ∞→g  we have
( ) Pg ,...,1, =→ βεω ββ  or 

( ) ,,...,1, Qig =∆+→ γεω γγγ  where  .NQP =+  It 

means that ( ) Ng ,...,1, =αω α  are N  branches of the 

algebraic function ( ).gω
C. At 0+→g  we have 
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5. THERMODYNAMIC LIMIT FOR THE 
BCS HAMILTONIAN

Now let us consider according to the paper [5] the 
thermodynamic limit 
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Let us assume that there exist the density of states ( )ερ  

and the density of pairs ( )ξr  satisfying conditions 
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Here  Ω  is  a  support  of  unperturbed  spectrum  and 
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Γ=Γ  is a support of spectrum of pairs and they are 

symmetrical with respect of the real axis.
In the thermodynamic limit the Richardson equations 
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are transformed to the singular integral equation
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According to a theory of singular integral equations 
this equation has a solution 
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where kk ba ,  are initial and final points of the line kΓ . 
The following conditions must be satisfied
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Example. Let us consider a simple example when Γ  
consists of one segment with limit points 
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Applying the theory presented above we obtain the 

following results:

(1)  the density of spectrum for pairs 
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(2)  the gap equation
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(3) the Fermi energy equation 
(4) the following expression:
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(4) the ground state energy
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6. NORMS OF THE EIGENSTATES
CORRELATTION FUNCTIONS 

The  normalization  factor  of  eigenstate  N  is 

expressed  in  terms  of  the  Jacobi  matrix  ∆  of  the 
Richardson equations:
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The correlation functions of variables jS  are 
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Sklyanin  has  developed  mathematical  means  to 
calculate different other correlation functions [6]

7. THE INTEGRABLE GENERALIZATIONS 
OF THE BCS HAMILTONIAN

The generalized BCS Hamiltonian 
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is  integrable  at  a  special  form  of  the  interaction 
functions ijg  and ijU .

Let us consider an integrable Hamiltonian 
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with the integrals of motion jτ  of the form 
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Furthermore we impose an additional condition 
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These equations for the quantities ijw  and ijv  have 
solutions 
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where  ju  are  arbitrary complex parameters  such that 

the quantities jkjk wv ,  are real. The parameter  q  can 
be  real  or  imaginary.  If  q  is  real  then  we  have 
hyperbolic functions, if ,, iKGiq ==  and juK ,  are 
real then we have trigonometric functions. 

The eigenfunctions of integral of motions jτ  are of 
the form 
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Here  ↓↓= ,...,0  is the vacuum, the primes at the 

sums  mean  that  the  indices  run  in  the  range 
{ } { }j\,...,1 Ω . The eigenvalues of  jτ  are defined by 
the equalities
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where jh  are solutions of the equations 
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Thus we obtain the integrable BCS Hamiltonian 
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with the following interaction functions 
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Here  parameters  KA j ,, β  are  arbitrary  real 
constants,  while  q  can  be  real  or  imaginary.  The 

eigenfunctions  NΨ  and  eigenvalues  NE  of  the 
Hamiltonian H  are
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At limit case 0→q  we come to the isotropic case, 
i.e. to the BCS Hamiltonian with the following constants 
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Diagonal elements jjjj Ug ,  are arbitrary since they 

renormalize jε .
There  are  generalizations  to  integrable  quantum 

models  with arbitrary Lie algebras,  in  particular,  with 
)(NO  and )2( kSp .

8. CONCLUSION
We  have  presented  above  a  review  of  the 

integrability  of  the  BCS  Hamiltonian.  Further  studies 
show that it has deep connections to integrable vertex 
models,  conformal  field  theory,  Chern-Simons theory, 
Bethe ansatz and quantum groups (see e.g. [7]).  Since 
the integrability of the BCS Hamiltonian have been used 
essentially in description of superconductivity of nuclei, 
ultrasmall  metallic  grains  and  quantum  dots  at  low 
temperatures it  presents an interest  also from point of 
view of applications.
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