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Kinetics of the impurity magnetic atoms in spiral magnetic is researched. The spectrum of the excitations of the 
impurity spin is obtained in approximation of weakly coupling. The equation for impurity density matrix up to sec-
ond order of the perturbation theory is obtained. For impurity spin σ=1/2 the kinetic coefficients in terms of correla-
tion functions are found.
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1. INTRODUCTION
The  kinetics  of  impurity  spin  was  considered  in 

many papers [1-4]. This paper deals with the kinetics of 
weakly  coupled  impurity  spin  in  magnetic  dielectric, 
which is considered as a thermostat. The thermostat has 
a spiral structure of magnetic ordering. Objects with a 
spiral  magnetic  structure  are  systems  with  a  sponta-
neously broken symmetry, in which the symmetry of the 
statistical equilibrium state is lower than the symmetry 
of the Hamiltonian. Such state is not translationally in-
variant and does not exhibit invariance to spin rotations 
around the spiral axes. The method of quasi-averages is 
a convenient tool for analyzing such structures [5-7]. In 
this paper, using the reduced description method [8], the 
equation for impurity spin matrix was obtained. From 
this equation in main approximation the energy spec-
trum of impurity spin was found. In last section we de-
scribe the evolution of impurity spin σ=1/2. We define 
the kinetic  coefficients,  which are  expressed in  terms 
correlation function of the thermostat. 

2. KINETIC EQUATION FOR IMPURITY 
DENSITY MATRIX

The equilibrium state of spiral magnetic is described 
by statistical operator 
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where:  Hm is  the  Hamiltonian  of  matrix;  1
0

−Y  is  the 
temperature;  BghhB 0µ+= ,  h  is  the  magnetic 
bias field; mceo 2=µ is a Bohr magneton; g' is the 
gyromagnetic ratio for matrix spin; B is the magnetic 
field, which is directed parallel to ax Z; p is the spiral 

vector;  νΩ is  the  thermodynamic  potential,  which  is 

found  from  the  normalizing  condition  1=νSpW  
(trace is calculated only on thermostat states).

The conditions, which are assumed from the struc-
ture of operator (1), are as follows

[ ] 0, ≠zSW , [ ] 0, ≠mHW , [ ] 0)(, =− z
Bm ShHW .

It means,  that  statistical  operator  W depends on time. 
The statistical operator also has such space symmetry
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where the operator of the translation aU  satisfies the fol-
lowing condition 
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a- pitch of lattice, I - unit operator.
In our case the equilibrium averages of spin components 
of matrix are as follows
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0  is the quasi averages value 

of operator A
 ; ⊥S  is the module of the transversal com-

ponent  of  spin;   S  is  the  longitudinal  component  of 
spin.

We suppose, that the impurity concentration is very 
low, thus the Hamiltonian of system is as follows
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where VBSgHBH z
mm +−= '

0)( µ Hamiltonian of spi-
ral magnetic in magnetic field, V Hamiltonian of the ex-
change interaction between the magnetic matrix and the 
impurity; zgBσµ 0− Hamiltonian of the impurity;  g is 
gyromagnetic ratio of the impurity; Izl, lI⊥  are the longi-
tudinal and transversal integrals of interaction between 
impurity spin σ and matrix spin Sl.

From the Liouville equation
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we obtain the equation for density matrix ρSpw =

,M
t
w =

∂
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where M  is the impurity collision integral.
The impurity matrix w satisfies equation 1=trw , tr  

is a trace on impurity state. We assume [8], that the sta-
tistical operator is the functional of impurity density ma-
trix and phase thxp B−= ϕ , when t >> 0τ  (τ0 is the time 
of relaxation in the thermostat)

{ })(),( ttw ϕρρ → .           
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It means, that
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Substituting this equality into Liouville equation (2) and 

assuming  
Bh−≈

.
ϕ in  main  approximation,  we  obtain 

jointly with (3)  the equations set  for impurity density 
matrix  w(t). As boundary condition we use the asymp-
totic condition for operator ),( ϕρ w
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Thus the Liouville equation jointly with (4) is as follows
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result  we  obtain  the  integral  equation  for  ),( ϕρ w  in 
common with (5)
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This equation and the equation (2) form the closed set of 
the equations for impurity density matrix w (t).
The zero and the first approximation for  ρ(w,ϕ) equal 
correspondently to
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Here VSpWV )(ϕ≡ .
The collision integral subject to (6a), (6b) is as follows 
correspondently
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As a result the kinetic equation for  w up to the second 
order on interaction take on form  
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where M(0), M(1), M(2) are defined by formulae (7).  

In order to calculate V  we use the unitary transforma-
tion  
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Then the calculation of the averages in spiral mag-
netic can be obtained with the operator 
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This statistical operator will be the space homoge-

nous operator. In order to get rid of dependence on time 
in the statistical operator we must turn into rotating sys-

tem of coordinates. It means, that we must consider the 
operator
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B

z
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Taking these notes into account and using the reduced 
description method [8], the equation for impurity densi-
ty  matrix  in  the  described  condensed  matter  was  ob-
tained:
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Frequency  0ω  and ort n  are defined by formulae:
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pI ⊥  are the Fourier components of the longi-

tudinal )(xI z  and transversal )(xI⊥  exchange integrals; 
Kαβ is the spin correlation function
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Here the averaging is performed with homogeneous and 
time independent statistical operator of magnetic matrix.

3. ENERGY SPECTRUM OF 
ANY IMPURITY SPIN IN MAGNETIC

The equations (8) allow us to find the spectrum of 
any impurity spin in magnetic in main approximation. 
We perform the turn in spin space so as 

zUnU σσ αα =+ ,

where  yieU α σ
α =  is  the  unit  operator  of  turn,  tan

zx nn /=α .
In a result we obtain the equation for impurity density 
matrix w~

[ ]ztwitw σω ),(~)(~
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The Hermit operator  w~  is characterized by the set of 
the matrix elements 

nwmwmn
~~ ≡ ,            σσ +−= ,..., nm ,

where m  is the eigenvector of the operator zσ , 
,mmmz =σ   σσ ≤≤− m .

The equation (9) in terms of the matrix elements is as 
follows 

)(0
~)()(~

tmnmn wnmitw −−= ω .
From this equation we define the energy spectrum of the 
impurity spin.

)(0 nm −= ωω ,  σσ +−= ,...,, nm .
The  spectrum we obtain has  equidistant  character. 

This  spectrum  is  nondegenerated  spectrum,  when 
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σσ −== nm , and  σσ =−= nm , .  When  nm =  the 
repetition factor of the degenerate equals 12 +σ .

4. KINETIC COEFFICIENTS FOR IMPURI-
TY SPIN 2/1=σ

It is very difficult to solve equation (8) in general 
case. Now we pay main attention to the case, when the 
impurity  spin  is  equal  to  1/2.  In  this  case: 

)1)(2/1( iiPw τ+= , where iτ  is the Pauli matrix and P


is the polarization vector. From (8) we get the equation 
for a motion of polarization vector 
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The first item in round brackets describes the precession 
of the polarization vector. The coefficients  αD  define 
the shift and the thin structure of levels, and the coeffi-
cients SDα β  – their width.

Now we will find the solutions of the equations (10) 
in form 

t)exp(i~ ωP .
In  main approximation in  the  interaction between the 
matrix and the impurity spin we have obtained disper-
sion equation 

0)( 2
0

2 =− ωωω .
From this equation we have two solutions:  0=ω  and 

0ωω = . Next approximation gives frequency shift δ ϖ  
and damping decrement γ .
The solution for 0=ω  is as follows:
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These results correspond the results obtained in [9]. 
Now we consider the particular case, corresponding 

to  the  case  of  a  magnetic  with  “light  axes”  ordering 
type. For this case we have 0,0 ≠=± zSS . For fun-

damental frequency 0=ω  we have
01 =δ ω  , SD331 =γ .

For frequency 0ωω =  correspondently

32 D−=δ ω , ))(2/1( 22112
SS DD +=γ .

The results correspond the results obtained in [10]. 
Using  the  Goldstein  –  Primakov  form  for  matrix 

spin we can find the temperature dependence of the ob-
tained decrements. In quadratic approximation by f (the 
magnon distribution function) we have only decrement 

2γ , which is not equal to zero:
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Performing the integration we get in spin-wave approxi-
mation
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where Bgapp cp
'2)()( µθεε +=≡  is the energy of mag-

non, θ c  is the Curie energy, )0(~~ II =  is the zero Fouri-
er component of the longitudinal exchange integral.
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