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The equation for the magnetization is obtained on the basis of the kinetic equation for an isotropic distribution 
function of electrons scattering on massive impurity centers in the presence of magnetic and electric fields. The 
analytical solution of the Cauchy problem for a given initial distribution of the magnetization under conditions of 
paramagnetic resonance is obtained. The estimated dynamic frequency shift of the forced precession has nonlocal 
and nonlinear dependence on the nonuniform distribution of the initial magnetization. The dynamic frequency shift 
of the free precession has only nonlocal character. Time and space dependence of the internal field is obtained. All 
results are expressed in terms of the initial distribution of the magnetization without specifying its functional form 
and in terms of the propagation function. These results may be used for analysis of spin diffusion in natural and 
manmade materials and also in magnetometry.
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1. INTRODUCTION
The  system  of  electrons,  interacting  among 

themselves  and  with  motionless  potential  impurity 
centres randomly distributed in uniform external fields 
is described by a distribution function f ,  obeying the 
kinetic equation [1,2]
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where ),( tff xp≡ is  the  distribution  function  of  the 
electrons, which is a matrix in electron spin space;  q  

and  
p
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are  the  electron  charge  and  velocity, 

respectively;  L  and  eeL are the  electron-impurity  and 
electron-electron collision integrals;  B is the magnetic 
field,  E  is the static electric field;  Bσµ 0−=w (

0µ  
is 

the  Bohr  magneton,  σ are  the  Pauli  matrices).  We 
assume that massive charged impurities whose kinetics 
is  not  considered  here  form  neutralizing  electrical 
background. 

We shall define the distribution function of electrons 
on energy e  [3]
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where ( ) =eρ ( )∫ − pp eedV δ  is the electron density of 
states, and the brackets mean averaging defined by the 

formula  (2).  It  follows  from  Eq. (2),  that  ,0=fL

where 
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Indeed,  the electron-impurity  collision integral  has 
the form

( ) ( ) ( ) ( )( )∫ −−= ppppp ppp ffeewdVNLf ''' ',2 δπ ,

and hence  0=Lf .  Here  N  is the impurity density, 
( )',ppw  is  the  probability  per  unit  time  of  electron 

scattering  on  the  impurity  centre.  As 
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and after integration by parts we have 0=fL .

The operator L  has property

( ) ( )BB −= +LL , (4)

where + means the conjugate operation, defined by the 
formula ( ) yxyx ,, ≡ . By virtue of the definition of the 
operators  L and  'L  we  have  ( ) ( )LyxyLx ,, = , 

( )( ) ( )( )yLxyxL BB −= ',,' , i. e. Eq. (4) is valid.
As  the  result  of  averaging  Eq. (1)  we  obtain  the 

equation for distribution function ( ) :,, ten x
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To close this equation one has to express the current 
kj  in terms of  n . It can be done, if the frequency of 

electron-impurity collisions  1−
eimpτ  is much greater than 

the frequencies of electron-electron collisions  1−
eeτ , and 

if  the  times  t  large  in  comparison  with  the 
corresponding  relaxation  time  eimpτ ,  the  electron 
distribution function becomes some functional of n , e. 
i.,  the  electron  distribution  function  becomes 
independent of the electron momentum direction due to 
the collisions of electrons with impurities. On this basis 
it is possible to show, that in the linear approximation 
with respect  to  the gradients and on electric  field the 
diffusion current is [4] 
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where ( ) ikki vvLD ,
1−

=B  is the diffusion coefficient 

of  electrons  in  a  magnetic  field  having  the  property, 
( ) ( )BB −= ikki DD , which follows from (4).
In case of an isotropic electron dispersion relation 

pp ee =  we get
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The cyclotron frequency cΩ  is equal to p
v

c
Bq

c =Ω , 

( ) ( )∫ 









−−≡−

'||
'

1',2 ''
1

pp
pppp ppp eewdVNeimp δπτ .  (8)

Equation (5) and (6) determine a closed equation for 
the  distribution  function  ( )ten ,, x ,  which  is  isotropic 
with respect to the moments [4].

2. MACROSCOPIC EQUATION FOR 
MAGNETIZATION

We define the macroscopic density of the electron 
magnetic  moment  ( ) −= 321 ,, MMMM magnetization 
by the formula

( ) ( )∫= tendVSpt ,,
2
12, 0 xxM pσµ . (9)

In  view  of  the  relation  for  Pauli  matrixes 
ljkljkkj i σεσσσσ 2=−  the  kinetic  equation  (5)  after 

multiplication  by  σµ 0 ,  taking  the  trace  on  the  spin 

variables, and integration over pdV  takes the form
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where the flux density of the electron magnetic moment 
is equal to
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In  order  to  obtain the  closed  equation  for  the 
magnetization we assume that  function Dkp is  smooth 
over

е, therefore it is possible to take it out under integral 
sign. We integrate the second term in (11) by parts on е, 
and assume that the surface terms are small at е=0, and 
at e=eF, where  eF  is  the  Fermi  energy. This 
approximation allows us to write down the equation for 
the magnetization as
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Equation  (12)  without  allowance of  spatial  non-
homogeneity  corresponds  to  the  Bloch  equation,  and 
forms the basis of the theory of paramagnetic resonance. 
The account of nonhomogeneity is carried out in Refs. 
[1,5] without concrete description of the character of the 
diffusion mechanism. The nonlinear equation describing 
a collision dynamics of magnetization in the absence of 
external fields is obtained in Ref. [6]

The  purpose  of  the  present  work  is  to  study  the 
magnetization  dynamics  of  electron-impurity  systems 
on  the  basis  of  Eq. (12)  under conditions  of 
paramagnetic resonance.

3. PARAMAGNETIC RESONANCE IN 
ELECTRON-IMPURITY SYSTEMS

We  consider  the  magnetization  behaviour  in  the 
case,  when  the  external  magnetic  field  in  Eq. (12) 
consists of two terms B=B0+h(t),  where B0 is the static 
field, and h(t) is the alternating field.

To find the solution of Eq. (12) we shall develop the 
scheme described by Bar'yakhtar and Ivanov in Ref. [7]. 
For this purpose, we shall present the solution for the 
magnetization  as  an  expansion  in  powers  of  the 
amplitude of the external alternating magnetic field 
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After substituting Eq. (13) into Eq. (12) we have an 

infinite system of equations for ( )km
( ) ( ) ( )

( ) ( ) ],[2

],[2

1
0

0

−−

=−+
∂
∂

k

kkk

t

D
t

mh

mmBm

µ

µ
, (14)

( ) ,0,...;2,1,0 1 ≡= −mk         ( )B,0,0=B ,

66



( )

( ) ( )

( ) .)1
2

22

1(

2
3

1221

2

2
2

2

2

2

2

z
E

e
q

y
EE

e
q

x
EE

e
q

zyx
dD

c
F

c
F

c
F

cF

∂
∂+−

∂
∂−−

∂
∂+

−
∂
∂++

∂
∂+

∂
∂≡

ω

ωω

ω

 (15)

At  first  we  find  the  solution  ( )0m  of  the  Cauchy 
problem  with  the  help  of  the  change  of  dependent 
variables,
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For  the  Fourier-components  ( ) ( )ti ,0 km  we  get  a 
system  of  differential  equations  of  the  first  order  in 

time. This system is easily solved. Carrying out return 
transformation,
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we find the solution for magnetization in the form of 
free precession in constant fields,
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with the propagation function equal to
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where
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and Fν  is the Fermi velocity.
This function obeys the equation 
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and also has the properties
( ) ( )

+→

−=

0

,',',lim

t
tg xxxx δ

(22)

( ) ( )
+→

−=
∂
∂

0

.',',lim

t

Dtg
t

xxxx δ
(23)

An important property of the propagation function is 
that  it  satisfies  the  Smolukhowski-Chapman-
Kolmogoroff equation 
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The  particular  solution  ( )1m  of  Eq.  (14)  with  the 
right hand side  ( ) ( ) ( )],,[2 0

0 tt xmhµ−  can be obtained, 
using  the  semigroup  property  of  the  function 
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It  is  seen  from  the  formulae  (25),  (26),  that  the 
magnetization at the time  t is determined by the field 

( )th  at  all  previous  moments  of  time,  starting  the 
moment of inclusion.

We  choose  left  rotation  for  external  alternating 
magnetic field, which is perpendicular to the static field 

0B ,  ( ) ( )0,sin,cos ttht ωω −=h ,  h  is the amplitude of 
the field, ω  is the frequency of the alternating magnetic 
field. Since at the paramagnetic resonancе Ω=ω , we 
find  from  formulae  (25), (26),  that  the  particular 
solution  for  the  magnetization  linear  in  the  field 
approximation is the forced precession,
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lagging in phase behind in the phase of the alternating 

magnetic field by 
2
π

.

Having  continued  the  procedure  of  iteration,  it  is 
possible to sum up series on  t1ω  and find the general 
exact solution for the magnetization dynamics (12)  at 
paramagnetic resonance:
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At  0=h  this  solution  transforms  into 
( ) ( ) ( )tt ,, 0 xmxM = ,  see Eq. (18).  As is  seen from the 

solution (29), there is no divergence in time. Finally we 
come to the conclusion, that the solution of the Cauchy 
problem of the Eq. (12) with the initial distribution (19) 
in the class of square integrable functions is completely 
determined by the propagation function and the shape of 
the  sample,  i.  e.,  by  the  integration  volume.  For  an 
unbounded medium under conditions  of  paramagnetic 
resonance the solution of the Cauchy problem takes the 
form of Eq. (29).

The  magnetization  projection  ( )tM ,3 x  oscillates. 
This fact implies that a inverse population occurs in the 
system considered.

For the analysis of the forced precession we write 
the solution (29) for 
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where the local amplitude and phase of precession are 
equal to
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Expanding the phase  ( )t,xφ  (31) with respect to  t  
and restricting ourselves to the term linear in t , we get, 
in view of property (23), the local dynamic shift of the 
forced  frequency  'Ω  with  respect  to  Larmor 
precession Ω ,
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the cause of which has the meaning of the internal field 
at the point  x  (analog of Suhl-Nakamura field [8] in a 

paramagnetic  medium).  This  field  depends  on  initial 
nonuniform magnetization distribution at all points, that 
is, it has nonlocal character. Without nonlocality being 
taken  into  account,  this  shift  is  proportional  to  the 
amplitude of the forced field and has the simple form,
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As  it  is  seen  from  the  formula  (33),  this  shift 
depends non-linearly on initial distribution. This result 
coincides with that of Ref. [8] in view of heterogeneity. 
It follows from formula (32) that the dynamic shift of 
the free precession ( )0,' xfreeΩ  is completely nonlocal:
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Now  it  is  obvious,  that  in  the  general  case  the 
dependence of dynamic shift on time and co-ordinates is
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We  find  the  maximal  amplitude  of  the  forced 
precession maxa  from the condition 03 =M , i. e.,
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After substituting (36) in (31), we get
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and the ( )kt  are determined by the solution of Eq. (36), 
which can be written in equivalent form as 
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In the simplest case we find:
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Decaying bursts  of  precession amplitude  maxa  are 
observed.  The  general  exact  solution  of  the  equation 
(12) is given in the Appendix.

4. CONCLUSIONS
The evolution dynamics in the system of electrons 

and impurities placed in static electrical and magnetic 
fields is investigated under the influence of a alternating 
magnetic  field  under  conditions  of  paramagnetic 
resonance.  The  general  formulas  for  all  three 
magnetization  components  in  their  evolutionary 
interrelation  are  obtained,  since  experimental 
engineering  allows  one  to  measure  these  components 
[9]. The behaviour of forced precession is theoretically 
investigated.  The  dynamic  shift  of  the  frequency  of 
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paramagnetic  resonance  caused  by  a  nonuniform 
distribution of initial magnetization is found. All results 
are  expressed  in  terms  of  the  initial  magnetization 
distribution  and  a  propagation  function.  The  results 
obtained are applied to the analysis of spin diffusion in 
natural  and  manmade  materials  [10,11]  and  also  in 
magnetometry [9].
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APPENDIX
If  the  mismatch  ω−Ω=∆ ,  i.  e.  the  difference 

between Larmor precession Ω and the frequency of the 
alternating  magnetic  field  is  not  equal  to  zero,  the 
general exact solution of the equation (12) has the form:
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