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The model of plastic deformation evolution and localization processes in irradiated materials is proposed. This 
models takes into account the dislocation distribution function dependence on dislocation velocity in an ensemble. It 
is shown that the fraction of dislocation overcoming radiation defects with high velocities in the dynamical regime 
grows with increasing radiation hardening.
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Radiation hardening and embrittlement caused by it 
are  one  of  the  most  actual  directions  in  the  reactor 
material science. Material radiation hardening manifests 
itself in increasing an yield point and lowing hardening 
velocity of materials and also in forming “fluidity tooth” 
and the fluididty area of Chernov – Luders’ kind [1,2]. 
Plastic  instability  of  materials  is  due to  these effects. 
Usual  curves  of  deformation  are  shown in  Fig. 1  for 
reactor steels at test temperatures below 0.3  Tm (Tm is 
melting  temperature).  Curve  1  is  an  initial  material, 
curve 2 corresponds to a lower dose than curve 3 does. 
Our  analysis  [3]  displayed  that  (curve  2)  a  lot  of 
materials has such a type of strain already at radiation 
dose  ≤ 10-2÷10-1 dpa  (displacement  per  atom).  The 
minimum or “area” of curve 2 is a result of manifesting 
the  effects  of  plastic  instability,  namely,  dislocation 
channeling. The stage corresponding to “area” of curve 
2 indirectly transits to the material destruction stage at 
higher doses of radiation (≥1…10 dpa, curve 3).

Up – to – date approach to plastic deformation as a 
collective  dislocation  process  is  supposed  to  describe 
the  effects  of  dislocation  localization  and  self-
organization on the basis of studying the evolution of 
dislocation  ensembles  in  deformed  materials.  In  the 
works [4], the kinetic processes of dislocation ensemble 
are  considered  theoretically  in  details  within  the 
synergetical approach, and the models are supposed to 
explain  forming  channels  without  defects  in 
nonirradiated crystals and localization of deformation in 
irradiated materials.

Earlier,  the  models  [5]  were  proposed  to  consider 
arising  the  effects  of  plastic  instability  and  plastic 
deformation  localization  on  the  basis  of  individual 
dislocation behavior. But many of plastic deformation 
processes  are  a  result  of  stochastic  motions  of 
dislocations. There are some models (see, for instance, 
[6]) that start from dislocation ensemble defined by a 
dislocation distribution function depending on radius – 
vector r  and time t .

However, we’ll consider the dislocation distribution 
function depends on not only radius – vector r , time t
but and on velocity v  and its orientation in a space, as 
material  plastic  deformation  is  caused  by  the  mobile 
dislocations.  The  dislocation  distribution  functions 
averaged  over  orientation  of  dislocation  lines  in  the 
space  are  considered  in  this  work.  Upon  that  the 

dislocations of ensemble can be considered as a set of 
dislocation line segments [11].

Let  the  mobile  dislocations  interact  with  fixed 
obstacles of different nature and pass through it, moving 
in channeling regime [2]. Upon that it is supposed on 
the  basis  of  experimental  facts  that  the  ensemble 
dislocations  have  the  velocities  near  0,1  of  sound 
velocity in a irradiated deformed material. This situation 
corresponds  to  initial  stages  of  irradiated  material 
deformation when the dislocation ensembles overcome 
the obstacles  represented by small  clusters,  loops and 
micro voids.

Fig. 1.  The typical  strain curves  (σ is  strain,  ε is  
deformation) of reactor steels at the test temperatures  
below 0.3 Tm (Tm is  melting temperature).  1  –  initial  
(nonirradiated)  material,  2  –  material  irradiated  by 
small doses (10-2÷10-1 dpa), 3 – material irradiated by  
the doses upwards of 1 dpa

We’ll investigate the evolution processes of plastic 
deformation on the basis of the general kinetic equation 
for the dislocation distribution function n t( , )r v, :
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where  a  is  a  dislocation  acceleration  caused  by  an 

external force F , v′Ωd  is an element of solid angle in 

velocity  space,  N is  a  density  of  the  immovable 
obstacles  interacting  with  dislocations.  It  is  supposed 
that  the  collision frequency of  dislocations  moved by 
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velocity v  with obstacles is equal Nv  where v=v  
by analogy with a gas charged particle scattered by an 
immobile molecule in plasma. 

The  presence  of  a  divergent  term  in  Eq. (1)  is 
caused by supposing the Fokker – Planck form of the 
collision term for dislocations [10].

Further,  we  consider  the  spatially  homogeneous 
case
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Eq. (2)  means  that  dnn α< <−=∆ 21  (d is  a 
distance between the obstacles,  α is coefficient of the 
order  of  unit)  that  is  the  distribution  function  of 
dislocation  ensemble  does  not  change  on  the  length 
equal to the order of a distance between the obstacles. It 
is easy to obtain in spherical coordinates  v,  θ,  ϕ in the 
velocity space with a polar axis along an external force 
F drawing the acceleration а
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where θjjv ,  are corresponding components of density 
dislocation flow in spherical  coordinates.  We average 
Eq. (1) with account Eq. (2) over angles. Upon that we 
suppose 1cos ≈θ . As vv ′= , then the right side of 
Eq. (1) is equal zero. In the result, we obtain the kinetic 
equation  for  the  averaged  distribution  function 
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where  vj  is the flow density radial component caused 
by the collisions between the dislocations. Analysis of 
the  collision  Fokker  –  Planck  term  gives  the  next 
expression of the flow vj :
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where  ddf  is  the  collision  frequency  of  the  fast 
dislocations  with  the  slow  ones,  M is   mass  of  a 
dislocation  quasi  particle  and  Т is  temperature  of  a 
material sample.

As seen from Eq. (3), the total flow density vJ  in 

the velocity space consists of the collision part  vj  and 
the part caused by the external force

najJ vv +=
As  the  flow  of  the  fast  sliding  dislocation  doesn’t 
change  practically  during  time,  we  consider  the 
distribution  of  these  dislocations  as  stationary 

0=∂∂ tn  and come to the relationship

qconstJv v ≡=2 . (5)

According to Eq. (4), Eq. (5) is the differential equation 
for  the  distribution  function  n .  We  consider  that 

3~ −vf dd  for  collisions  of  mobile  dislocations  with 
immobile  ones.  Similarly  to  classic  mechanics,  the 
dislocation  considered  as  a  quasi  particle  scatters 

elastically by the potential  field  1−r .  As known, in 

this  case,  the  effective  differential  section  of  elastic 
scattering  (and,  consequently,  the  collision  frequency 

too)  is  proportionally  4−v  (see  [7]).  On  the  other 

hand, it is known that moving dislocations can interact 
with  the  immobile  obstacles  (for  instance,  immobile 
dislocations) accordingly the law r/1~  where r  is a 
distance from the obstacle up-to the dislocation axis as 
it places, for instance, for an edge dislocation in the case 
of  impurity  Cottrell  atmosphere  [8],  or  in  interacting 
two screw dislocations (see, for instance, [12]).
We suppose
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where С=const. 
The solution of Eq. (6) takes the form
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The integration constant  C1 can be defined by the set 
distribution at х=0, for instance, Maxwell distribution:
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where dN  is a dislocation density.
 On the other hand, as the function n  must be finite at 

∞→x , then the expression in brackets of Eq. (7) goes 
to  zero.  It  is  the  condition  for  the  constant  С to  be 
found:
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Evaluating  the  integral  of  Eq.  (8)  by  the  method  of 
saddle  points  we  expand the  exponent  index  near  its 
maximum point  x=1. As result, it is easy to see that a 
number of the dislocations passing through the obstacles 
can be defined by the expression
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)exp(~
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where ρ  is the average density of the dislocations.
The dependence  )(sqq =  takes  the form shown on 

Fig. 2,  where  the  quantity  aas c=  is  put  as  the 
abscissa axis. According to the data obtained by us and 
other authors [9] the relative increasing the flow stress 
of a material in 4-20 times is observed in a lot of the 
model and  reactor  materials already  at the  doses of 
10-2...10-1 dpa.  Besides,  it  is  seen  that  the  fraction  of 
dislocations  overcoming  obstacles  in  the  dynamic 
regime  becomes  already  essential  other  things  being 
equal in the irradiated materials (accordingly [5], getting 
dislocation velocities ∼ 0.1 of the sound velocity c is a 
criterion  of  the  dynamical  or  “pseudo  –  relativistic” 
regime). Fig. 2 shows also that the dynamical (pseudo – 
relativistic) regime of deformation can be getting at the 
lower dislocation velocities.

Fig. 2. The  dependence  of  the  fraction  of  the 
dislocations overcoming through the obstacles on the  
external force characterized by the quantity s. q1, q2, q3,  
q4 corresponds  to  the  values  of  the  obstacle  
concentration increasing under irradiation

As  shown  in  work  [5],  the  pseudo  –  relativistic 
effects  must  be  taken  into  account  already  for  the 
dislocation  densities  ≈1010сm-2 that  is  the  velocity  of 
dislocation motion can approach to the near sound one 
(≤ 0.1  c). For instance, in the case of irradiated nickel, 
nuclear steel, this dislocation density corresponds to the 
strain  ≥100Mpa. So, the similar effects can manifest at 
the  initial  deformation  stages  corresponding  to  the 
interval of Chernov – Luders deformations. A lot of the 
experiments showed that the high dislocation densities 
are  observed  in  deformation  channels  forming  in 
irradiated  materials  near  the  yield  point.  This  is 
connected  with  the  plastic  instability  of  Chernov  – 
Luders’ kind [1,2].

The model represented by this work can be related 
indirectly  with  the  problem  of  embrittlement  of  the 
irradiated  nuclear  steels.  Experimental  investigations 
reveal  that  the processes of deforming and destroying 
near steels are accompanied by the dynamical processes 
of dislocation channeling and destruction of the smallest 
defects  such  as  micro  void,  loops  and  isolation  in 
nuclear steels. The localized deformation channels near 
an intersurface can cause the sharp strain concentration 

proportional to the total value of a dislocation “charge” 
and favour forming the micro cracks.

Thus,  in  the  represented  model,  the  evolution  of 
plastic  instability  is  considered  in  an  irradiated 
deformed material for allowing the dependence of the 
dislocation distribution in the ensemble on velocities. It 
is  shown  the  sharp  increasing  the  fraction  of  the 
dislocations overcoming the obstacles in the dynamical 
regime can be observed. Upon that this effect can be get 
for lower deformation velocities in increasing a power 
of embrittlement (irradiation dose).
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