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The equations describing simple secondary waves are obtained in gas dynamics with conserved and non-con-

served number of quasi-particles at interactions. The non-linearity parameter in phonon and magnon gas dynamics is 
found, which appears to be in its value of an order of unity. The generalized Burgers equation is obtained describing 
the quasi-simple secondary waves. 
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INTRODUCTION
A  system  of  equations  of  gas  dynamics  of  bose 

quasi-particles has been obtained in the work [1]. This 
system of equations is non-linear relative to the inde-
pendent variables: the drift velocity u , the relative tem-
perature ( ) 00 TTT −=θ  ( 0T  is the equilibrium temper-
ature) and chemical potential µ , if the number of quasi-
particles at interactions is kept constant. In the linear ap-
proximation, this system of equations describes, in cer-
tain  circumstances,  the  weakly  attenuating  secondary 
waves [1, 2] being similar to the second sound waves in 
He II [3]. These waves relate to a hyperbolic type, i.e. 
their dispersion is absent. The paper deals with the non-
linear  secondary  waves  in  a  gas  of  quasi-particles, 
which are described by a system of non-linear equations 
of gas dynamics of quasi-particles in the second approx-
imation. This system of equations is similar to the sys-
tem of non-linear equations of gas dynamics of parti-
cles, describing the propagation of non-linear acoustic 
waves in a medium without dispersion [4-6]. Using this 
system of equations for the one-dimensional case, when 
there is no dissipation, we can derive an equation de-
scribing  simple  Riemann  waves.  Taking  into  account 
the dissipative processes one can find the generalized 
Burgers equation describing quasi-simple waves. These 
waves are featured by the distortion of  their  profiles, 
like, for example, in the case of a periodic wave - a saw-
tooth profile is formed. 

SIMPLE SECONDARY WAVE EQUATION
The simplest way is to obtain the simple secondary 

wave equation in isotropic gas of  quasi-particles with 
the non-conserved number of quasi-particles. In the case 
of a plane along the x-axis, which can be realized in, for 
instance, an infinite plate of finite thickness, ( ),, txuu =  

( )txTT ,= . A system of gas dynamics equations in the 
second  approximation,  in  terms  of  independent  vari-
ables and kinetic equation will be written in the follow-
ing form
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(1) 
where S ,  C are the densities local equilibrium entropy 
and  heat capacity of a gas of quasi-particles, uP


ρ~=  is 

the pulse density, ρ~  is the density of a gas of quasi-par-
ticles, ζη ~,~ are the first and second viscosity kinetic co-
efficients, κ~  is the hydrodynamic thermal conductivity 
at account of normal processes of quasi-particle interac-
tions. r is the coefficient of external friction, as a result 
of the quasi-particle interaction effects leading to non-
conservation of their momentum, e.g. the umklapp pro-
cesses (U-processes). In the absence of dissipation the 
system  of  equations  (1)  describes  simple  secondary 
waves  similar  to  Riemann  waves  [4-6].  In  a  simple 
wave, all  quantities are the functions of one quantity. 
Let us assume that  ρ~  and  T  are the functions of the 
drift  velocity  u


 and  ( )( ) ;,~~ uTuρρ =  ( )uTT = , 

u
T

dT
d

udu
d

∂
∂+

∂
∂= ρρρ ~~~

.  By  substituting  these  values  into 
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If 0≠∂∂ xu , then from the conditions of existence of a 
solution it follows that:  
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where  
IIW

uM =  is the number analogue to the Mach 

number in acoustics ( )1< <M  ( ) 212
0II

~ρCTSW =  is the 
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quasi-equilibrium velocity of secondary waves. By sub-
stituting (3) into any of the equations (2), we obtain the 
following simple wave equation in the second approxi-
mation by the Mach number M
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where  
C
STW
0

2
02

0II ~ρ
=  is the equilibrium velocity of sec-

ondary waves. The line signifies the equilibrium values 
of the quantity are taken. 

It  is  conveniently to deal with the variables xx ′=  
and  ( )0IIWxt −=τ , when solving the boundary-value 

problems. Then  ;
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from (4) it follows (omitting the prime x ):
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where the non-linearity parameter equals
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If the number of quasi-particles is conserved, then a 
simple secondary wave equation can be derived simil-
arly. Assuming the quantities  T ,  µ  and  ρ~  to be the 
functions of the drift velocity  u
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absence of dissipation, one can obtain 
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From the solvability conditions of the system (6),  we 
can find the relation between  dudT and  dudµ  and 
the following expression for dudT  in zero approxima-
tion by the Mach number M
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n , α , β  are determined in [1]. 
Proper substitution of variables gives the following 

simple secondary wave equation in gas dynamics with 
the conserved number of quasi-particles
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where the non-linearity parameter equals
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Because secondary waves are essentially the thermal 
waves, it is more convenient to deal with the equations 
with more natural variable  θ  rather than with for the 
drift velocity. In the linear approximation, the drift ve-
locity u   and  θ , as it follows from (3), (7) are related 
to each other in gas dynamics with the non-conserved 
number  of  quasi-particles  by  the  relationship 

SCWu II0θ= , and by the relationship ***
II0 SCWu θ=  

in  the  case  of  the  conserved  number.  By substituting 
these values into (5) and (8), we obtain the simple sec-
ondary wave equation in terms of θ :
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Let us present the values of the non-linearity param-
eters  ε  and  *ε  for some specific gases of quasi-parti-
cles. In gas dynamics of phonons, using the values of 
the necessary thermodynamic quantities given in [1] , 
we obtain 32=ε  [7]. In gas dynamics of magnons in 
ferromagnetics  with magnetic  anisotropy of  the "light 
axis" type in the case when the number of magnons is 
not conserved and energy of magnon activation is small 
( Ta < <ε ) and using the given in [1] values of thermo-
dynamic  quantities  characteristic  of  magnon  gas,  we 
have  34=ε . If an interchange magnon scattering ap-
pears to be decisive at a number of magnons being con-
stant, one can easily verify that in this case the non-lin-
earity parameter equals as well 34* =ε .

In gas dynamics of magnons in anti-ferromagnetics 
with magnetic anisotropy of the "light plane" type, in 
the low temperature range, a three-magnon interaction 
[1] appears to be decisive; in this case the number of 
phonons is not conserved. In this case the value of the 
non-linearity parameter will be of order of unity 1~ε .
Solutions of the equation (10) are well known [4 - 6]. 
As the simple wave front spins, the importance of dissi-
pation  coefficients  is  increasing.  Further  evolution  of 
the non-linear secondary waves will be then described 
by the system (1).

GENERALIZED BURGERS EQUATION
FOR QUASI-SIMPLE SECONDARY WAVES

At small (but finite) amplitudes and small dissipa-
tion coefficients, there is a solution of the system (1), 
which can be considered as an analogue of the simple 
waves propagating along one-way direction [5, 6]. Such 
waves are called quasi-simple. To obtain the equations 
describing these waves, we shall assume - in much the 
same way as it was made in [8] - that all quantities are 
the functions of one of them with an accuracy of some 
arbitrary small function, i.e.

( ) ( ) ( )txuTTTu ,;,~~ ψρρ +==              (11)
We are seeking such a form of this function when 

the corresponding solution is the most close to a simple 

60



wave. Let us consider the function ( )tx,ψ  to be a quan-
tity of the second order smallness. Obviously, it will sat-
isfy the secondary wave equation up to the second order 
terms, when the waves are propagating along the posi-
tive direction of the x axis 
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Substituting  (11)  and  (12)  in  (1),  we received  in  the 
second approximation a following system:
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Using expression (3) to within the linear members on u  

and expressing from equation (12)  
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If we substitute (14) into the first equation in (1), in 
which the function ψ  is taken into account, we find the 
following generalized Burgers equation for quasi-simple 
waves propagating along the positive directions of the x 
axis
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Proceeding to the variables τ  and x ′  and assuming 
that the wave profile is changed slowly, we can neglect 
the derivatives with respect to x assuming that they in-
crease  the  order  of  smallness.  With  account  of  the 
above, we shall obtain the following generalized Burg-
ers equation.
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Using the relationships between the drift velocity u  

and θ , we shall write the Burgers equation (16) in the 
more convenient form in order to carry out further in-
vestigations in terms of θ : 
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one employs the condition of existence ("window") of 
secondary waves [1], then γδ > > . In this case, the last 
term in (17) could be neglected and we come to the con-
ventional Burgers equation [5,6,8,9],  being one of the 

most  comprehensively  studied  evolution  equations  in 
the non-linear wave theory 
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As it was shown by Hopf [10] and Cole [11], by substi-

tuting the variables  
τ
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one-fold integration, the equation (18) takes the form of 
the linear equation of heat conductivity 

2

2

τ
ϕδϕ

∂
∂=

∂
∂

x
                        (19)

which  is  capable  of  being  precisely  integrated.  This 
gives  a  rare  opportunity  to  precisely  solve  the  wave 
problem for a dissipation medium. If we know boundary 
condition  ( ) ( )τθτθ 0,0 = the  solution  of  equation  (19) 
can be written in the following from:
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