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A theory of the long-range correlations of density fluctuations is presented for the glass-forming liquids. The 
supercooled heterophase liquid (HPL) is considered as composed of solid-like and fluid-like species with many types 
of the short-range order (SRO). The random field Ginzburg-Landau (GL) equations are deduced for the HPL. The 
variety of the SRO originates the local random fields. It is shown that optimization of the free energy gives rise to the 
medium and long-range correlations of the random fields and order parameter. Conditions for observation of such 
correlations are deduced. Time dependent GL equations are used to establish the ultra-slow dynamics and annealing 
kinetics of the long-range correlations.
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1. INTRODUCTION
Long-range  correlation  (LRC)  of  density  fluctu-

ations, which are known as Fischer cluster, are revealed 
in one component glass-forming liquids  and polymers 
[1,2]. They have puzzling features:

1) They do exist in a rather large temperature range, 
~ 100K, above Tg.

2) The correlation length is up to 300 nm while the 
molecular interaction radius r0 is ~ 1 nm.

3) No  critical  behavior  of  the  heat  capacity, 
compressibility,  thermal  expansion  coefficient  is 
observed in the temperature region above Tg.

4) The  correlation  of  density  fluctuations  has  a 
fractal  structure  of  dimension  D<3.  The  dimension 
depends  on  temperature,  T,  and  substance.  It  differs 
from  the  universal  critical  exponent  of  the  pair 
correlation function.

5) Ultra-slow  modes  characterizing  the  Fischer 
cluster  dynamics  are  some  order  of  magnitude  faster 
than the Fischer cluster equilibration (annealing) time.

6) The α -relaxation processes are insensitive to the 
Fischer  cluster  formation.  The  ultra-slow dynamics  is 
considerably slower than the α-relaxation processes.

A  few  papers  are  devoted  to  theory  of  Fischer 
cluster.  In  [3]  the  LRC are  treated  as  the  long-range 
critical  fluctuations.  They  are  described  within  the 
framework of the model with two order parameters. But 
the features 3)-5) still have no proper explanation in [3]. 

In  this  paper  it  is  shown  that  the  observed  LRC 
appears  as  result  of  aggregation  of  liquid  domains 
having the same SRO. We start from the idea that glass-
forming  liquid  has  heterophase  mesoscopic  structure 
consisting  of  solid-like  and  fluid-like  species.  The 
average  lifetime of  each  speciemen is  nearly the  α -
relaxation time, ατ . The species can change their type 
and  SRO  but  the  average  concentration  of  species 
possessing the same SRO is constant at fixed pressure, 
P ,  and  temperature,  T .  The  fraction  of  molecules 
belonging to the solid-like species,  ns(x,t), is chosen as 
the  order parameter. In one or another form this idea 
was  used  by  others  the  free  energy  of  the  HPL  is 

described  in  the  mean field  approximation.  Equations 
proposed  in  [5,6]  show  that  the  HPL  could  have  a 
critical point. Moreover these equations are isomorphic 
to Van der Waals theory of the gas-liquid critical point 
(see e.g. [7]). Adding to the Van der Waals free energy 
the gradient term one can get the GL description of the 
system. The same procedure allows using GL equation 
for  HPL  [7].  Assuming  that  the  supercooled  liquid 
above Tg   is close to the critical point one can get an 
explanation  of   LRC:  it  is   correlation  of  critical 
fluctuations.  But  it  is  not  satisfactory  because  the 
properties 3) – 5) are not explained within that theory. 
To come up with a solution of the problem staying in the 
framework of the HPL model, one has to consider the 
SRO statistic and correlations. This way we immediately 
come  to  the  random  field  Ginzburg-Landau  model 
(RFGLM). Subsequent minimization of the free energy 
leads  straightforwardly  to  the  description  of  the 
correlation phenomena.  It  turns out  that  a  liquid with 
LRC that obey (1) – (6) minimizes the free energy.

GL approach is valid out of the fluctuational critical 
region  [7].  It  turns  out  that  the  fluctuational  region 
strongly depends  on  the  random field  properties.  We 
have  obtained  an  applicability  condition  of  the 
developed model.

2. RANDOM FIELD GL MODEL OF 
HETEROPHASE LIQUIDS

Let us take that the liquid is consisting of statistically 
independent species having different SRO and 0k  is the 
average  (on  the  all  species)  number  molecules  per 
specie.  Each  type  of  SRO  is  characterized  by  the 
average  minimal  energy  per  molecule,  iε ,  and  by 

number  of  configurations,  iw ,  or  configurational 

entropy  0kwk iBi ln=ζ  (kB is  Boltzmann’s  constant, 
“i”  denotes  ith  specie).  The  main  concept  of  the 
heterophase fluctuations (or  HPL) is that  the liquid is 
composed by solid-like and fluid-like species. Denoting 
by  Tiii ζεµ −=  the  chemical  potential  per 
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molecule of ith specie we assume, in  accord  with the 
HPL  models,  that  there  are  two  sets  of  chemical 
potentials,  { }

sskss µµµ ,...,1= ,  and 
{ }

ffkff µµµ ,...,1= .  Here   “s”  and  “f”  are  indexes 
denoting quantities and sets belonging to the fractions of 
solid-like  and  fluid-like  species  respectively; 

0kNk fsfs ,, =  are fractions of the solid-like and 

fluid-like species; sN  and fN  are the total numbers 

of molecules within these fractions, NNN fs =+ . 
The difference of chemical potentials of solid-like and 
fluid-like species is assumed to be considerable, 

( ) 2fsfs δδµµ +>−           (1)

Here  ...  denotes  an  spatial  average;  fs δδ ,  are 

variances of fs µµ ,  respectively.
Positivity of the interfacial free energy,

( ) 0
2
1 >−−=∆ fs µµµµ intint          (2)

is  necessary for  the phase separation,  intµ is the free 
energy per molecule on the solid-fluid interface. Positive 

intµ∆ provides “repulsion” of the solid-like and fluid-
like species. We assume that the conditions (1), (2) are 
fulfilled. 

In a continuous approach the space distributions and 
time evolution  of  the  solid-like  and  fluid-like  species 
can be described by the fields ),(~),( txtx iii µµµ +≡
, i = s, f. The free energy of liquid is a functional of the 
three  fields,  ),( txns ,  ),( txsµ , ),( txfµ .  As  it  was 
mentioned  above,  this  functional  has  the  GL form in 
which the coefficients  depend on the fields  ),( txiµ . 

Since  ),(~ txiµ  are some random fields (with variances 

fs δδ , ),  their  correlation functions  must  be  found by 
minimization of the free energy functional.

The solid-fluid phase coexistence curve (which is a 
direct  analog  of  the  critical  isochore  in  the  Van  der 
Waals theory) is determined by an equation, 

21/),( =TPns                                  (3)

where sn  is the space average of  ),( txns . At a fixed 
pressure  (3)  determines  the  coexistence  temperature, 

( )PTe  [9]. 
The  free  energy  functional  in  the  vicinity  of 

coexistence curve can be presented as follows:

G P T G P T G P Te( , ) ( , ) ( , )= +0 1

( )∫ 



 −++∇= − xdhcBAvG 34221

1 4
1

2
1

2
1 αααα  (4)

here v is the specific volume,

( ) ( )
2
1−= xsnxα ;

TAnmkrArA ~,~/~, 000
2

0 131
0= ;

intµ∆−= 24 0 eTkB ;     TkC 1
04 −=       (5)

hhh ~+= ,  

)(~)(~)(~; xxxhh fsfs µµµµ −=−=

and  ),( eTPG0  is  the  mean  field  free  energy  at 

eTT = ; fsh µµ ,,  are averaged quantities.
To consider changes of the order parameter driven 

by the random field ~h  we set )(~)( xx ααα += . Then 
the saddle point equation of (4) gives

( ) hCCB =++ 323 ααδ α ,       (6)

( ) )(~)(~)(~ xhxCCBxA =+++∆− αδαα α
22 33  (7)

In the close vicinity of the coexistence curve, where h  
and  α ,  are negligible, equation (7) has the following 
solution

( ) ( ) ( )∫ ′′′−= xdxhxxK
A

x 3
4

1 ~~
π

α (8)

)/(exp)( cRrrrK −= − 1 ,

22 3 αδCBBABRc +==− ~,~ . (9)

Some important conclusions follow already from (5), (7) 
- (9). Parameter B~  shows how close the system is to the 
critical  point.  A  simple  consideration  shows  that 

( ) 312 /~
heTbB δ> ,  where  b is  a  constant  ~1  and 

( ) 3122
0

2 /
heec TbTrR δ< ; here 

( ) )(~)(~)(~ xxxh fsfsh µµδδδ 22222 −+== .   (10)

Thus the critical fluctuations of the order parameter are 
driven by the random fields  ( ) ( ) ( )txtxtxh fs ,~,,~,,~ µµ . 
This conclusion is correct when thermal fluctuations are 
week compared to  those driven by the random fields. 
Repeating the argument used to  obtain the Levanyuk-
Ginzburg criterion [7] we get the condition

( )18
0

222 raTehh =∆> >δ    (11)

which determines  the  domain where the  random field 
driven fluctuations are much stronger than the thermal 
fluctuations  of  the  order  parameter  and  where  the 
application of RFGLM is valid. Here  a  is an effective 
radius of the molecular forces. 
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The variance of the field  ~h ,  (10),  depends on the 
correlator  of the fields  ( ) ( )xx fs µµ ~,~  which has to  be 
find by minimization of the free energy. As it follows 
from (4)  and (8)  the random field  driven contribution 
into the free energy is

( )

( ) ( ) ( )∫

∫

π
−

−α∇+∇

ydyhhyK
A

N

xdA
v

GG

3

32
1

~0~
8

~
2
1~~~

.                   (12)

Since  the  Green’s  function,  )(rK ,  has  considerable 

values,  ~1,for cRr ≤ , the short-range correlations of 

the fields  h~  and  α~ are important. The gradient term, 

∇G~  is positive while the next one, 1
~G , is negative. It is 

seen  from  (8),  (12)  that  ∇G~  has  minimal  value, 
222

00 ακ ~~~ rNAG∇ ,  if  )(~)(~)(~ 00 2hxhh ≈  with 

cRx < , i.e. if the field  h~  is strongly correlated on 

the  distance  ~ cR .  It  means  that  the  field  h~  has  a 
granulated structure: it can be approximately viewed as 
consisting of  correlated  domains (CD) of  radius  cR . 

Within each of CD h~  is nearly constant. Thus the CDs 

are specified by the values of h~ .

Turning to 1
~G  one can see that if the field h~  is not 

correlated on a scale larger than cR  then

( ) ( ) 31222
1

/
~~~

hech TNRNG δδξ −−  (13)

Expression (13) shows that )(~
1 ξG  decreases when 

2
hδ  increases.  It  follows from (10)  that  the  maximal 

value  of  2
hδ  (which  minimizes  1

~G ), 

( )22
fsh δδδ +=max ,  can  be  accomplished  due  to 

correlation of the fields  ( ) ( )xx fs µµ ~,~ :

)(~)/()(~ xx ffss µδδµ −≈ .                  (14)

This relation means that the SROs of the solid-like and 
fluid-like species are correlated.

The  free  energy  1
~G decreases  if  the  correlation 

lengths, )~(hξ , of the pair correlation functions of CDs, 
are much larger than cR . The physical meaning of these 
correlations is transparent: CDs of the same value h~ are 
aggregating.  They form correlated  aggregates  because 
the correlation, as will be shown, lowers the free energy. 

Let us take the pair correlation function  ),~( rhH  of 
the specified by h~  CDs in the following form, 

( )



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



<>−






<
−

3
3

2

2

DRrhr
R
rh

Rrh
rhH

c

D
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ξ

(15)

Then
( ) ( ) ( ) hdrhHhPrhh ~,~~~)(~ ∫=0             (16)

where the distribution of the h~  values is given by

( ) ( ) ( )[ ] xdhxhxhVhP 31 ∫ −= − ~~~~ δ       (17)

Expression (15) is the pair correlation function of CDs 
composing  a  fractal  aggregate  of  dimension  D  and 
correlation length avξ  [10]. The choice of this form of 
the  correlation  function  is  hinted  also  by  the 
experimental evidence [2,6].

Combining  (12),  (15)-(17)  we  have  the  following 
relation for the free energy 1

~G :

( )

















+

+−
−

−
1

1312
1 41

D

avc

av
he R

eTNG
ξ

ξδ
/

~~      (18)

Here avξ  is an average correlation length. 
Comparing (13) and (18) we see that the aggregation 

of  CDs  really  lowers  the  free  energy. The  described 
long-range correlations are resulting in the correlations 
of the density fluctuations which are proportional to the 
fluctuations of the order parameter. Since random field 
driven fluctuations have nothing to do with the thermal 
fluctuations  they give  an  excess  of  intensity  of  small 
angle light scattering that was reported in [1,2,6].

The  correlation  length  )~(hξ  can be  estimated as 
follows.  The  average  concentration  of  CDs within  a 
fractal is [10]

( )
3

4
3

−







≈

D

cR
hhc )~(~ ξ

π
.           (19)

On the other hand this quantity can be determined using 
the distribution function (17) and noting that the thermal 
fluctuations of  h~  within a CD are ~ 2

h∆ ,  as it follows 
from (11). Therefore 

hhPhc ∆≈ )~()~( 2                  (20)

and 

( ) ( )[ ] [ ] 3
1

3
1

2 −− ∆= DhcDccc hPRhcRh )~(~~~ξ .    (21)

Since 1−
hhP δ~)~(  we have 1< <∆≈ hhhc δ/)~(  and, 

as  a  result,  cRh > >)~(ξ .  The  experimentally  measured 
correlation lengths of Fischer clusters are ~102nm [1,2].  
With nmRc 1~  we have an estimate: 110 2 < <−~)~(hc . 
Thus condition (11) is evidently satisfied. 

Dynamics of the Fischer cluster (ultra-slow modes) 
can be described using the conventional time dependent 
GL equations.  Because  the  concentrations  )~(hc  are 
conserved  quantities,  the  spectrum  of  the  ultra-slow 
modes has the following form:

42



)(~~ 22
1

2211 1 qRBqR ccq γττ α +−−     (22)

where  γ 1  is a constant,  τ α  is the α -relaxation time. 

Noting that  22 −ξ~q  and  1< <B~  we see why the 
ultra-slow  process  is  much  slower  than  the  α -
relaxation.  Experimental  evidences  of  the  ultra-slow 
dynamics are reported in [1,2]. They are in accord with 
(22).

The  derivative  of  1
~G  (18)  w.r.t.  avξ  is  the 

thermodynamic  driving  force  of  the  aggregates 
formation. It is proportional to  32 /

hδ  and to  ( ) 2
avcR ξ/ . 

A simple version of the fractal aggregation kinetics [25] 
can be used to estimate the characteristic annealing time, 

ξτ , of the Fischer cluster,

τ ξ ~ 2+D
cR )/(ξτ α .           (23)

In the exponent of (23) the coefficient of 2 is coming 
from  the  thermodynamic  driving  force  while  the 
appearance of D is due to the dimension of the growing 
aggregate.  It  is  easy  to  ascertain  that  qττ ξ > > ,  (

1−ξ~q )  because  ( ) 31 10~/~ D
cq Rξττ ξ

− .  This 
estimate has many experimental confirmations [1,2].

We see that the theory developed here describes the 
observed properties structure and dynamics of a Fischer 
cluster.  According  to  it  a  Fischer  cluster  has  a 
polychromatic  fractal  heterophase  structure. 
Polychromatic  cluster  structures  are  described  e.g.  in 
[11]  in  connection  with  the  percolation  problem.  If 
clusters have a property described by a parameter, this 
last one can be used as a «color», specifying clusters. 
Several  interpercolating clusters  form a polychromatic 
structure. In the heterophase liquid h~  plays a role of a 
color  for  the  CD  aggregates.  It  parameterizes  the 
chromatic spectrum of CDs. A specific feature of these 
polychromatic structures is the ability of CDs to change 
their color restoring the structure’s ergodicity. The life 
time of a CD is ~ ατ  while the aggregate growth and 
rearrangement processes take much longer times. 

3. DISCUSSION AND CONCLUSIONS

The developed theory, based on the RFGL equations 
and  on  the  concept  of  heterophase  fluctuations,  takes 
into account the multiplicity of the SRO which is a basic 
property of the glass-forming liquids. In particular this 
property  manifests  itself  in  the  developed  inherent 
structure  and  in  the  free  energy  landscape.  The  α -
relaxation  processe  is  a  cooperative.  It  involves 
cooperatively rearranging regions (CRR) of a  few  nm 
size.  According  to  our  estimates  cR  is  of  the  same 
scale.  Of  course  the  sizes  of  CRR  and  CD  can  be 
different because CRR is connected to dynamics while 
CD  appears  as  a  characteristic  scale  of  the  medium-
range order.  Nevertheless both are conditioned by the 

medium range  correlations.  To  some extent  the noted 
genetic connection between CRR and CD reminds about 
a similar correspondence of CRR and CD in the Adam-
Gibbs and Gibbs-Di Marzio theories but  this problem 
has to be considered in more detail. 

The relation of the the present  theory to the other 
models of a supercooled liquid and to the theory of the 
critical point was already elucidated in the Introduction. 
To emphasize this connection it should be noted that the 
developed  RFGLM can  be  reduced  to  the  models  of 
supercooled liquid proposed  in [5,6].  For  example,  to 
get  from (4),  (5)  to  the equations the Van der  Waals 
approximation we have to put 022 === Afs δδ . 

It is worth noting is that condition (11) is satisfied if 
the field  h~  changes criticality, location of the critical 
point, and the order of the phase transition at the critical 
point.  The  critical  point  location  (dependent  on  the 
parameter )( eTB ) is determined from 

( ) ( ) 312224
/

int)( hcritee CBPTTB δµ −==∆−≡ .(24)

The phase transition that takes place at this point is not 
of the second but of the first order, the order parameter 
jump  is  ( ) 31//~ eh Tδ .  Relation  (24)  shows  that  the 

random field lowers the critical value of )(PTe . This 
is a reason why the majority of the glass-forming liquids 
do  not  have  a  polymorphous  liquid-liquid  phase 
transition.

To compare the theory of LRC presented here with 
the conventional theory of LRC in the vicinity of critical 
point let us consider the two-fluid model developed in 
[3].  Bendler  and  Shlessinger  have  treated  the 
supercooled liquid as a binary heterophase mixture of 
defect  and  nondefect  structures  (fluid  1  and  fluid  2 
respectively)  above  a  critical  point  Tc< Tg.  They have 
noted that their model is related to the ideas of Frenkel 
[12]  and  Ubbelohde  [13].  In  [12,13]  the 
thermodynamics of heterophase fluctuations is described 
within the framework of droplet approach. (It has to be 
noted  that  the  thermodynamics  of  the  heterophase 
systems  gas-liquid  and  fluid-solid  in  the  droplet 
approach was developed in [14] and [5] respectively). 
The defects of fluid 1 are mobile at high temperature but 
with  temperature  decreasing  these  defects  starts 
aggregating. The aggregated defects are immobile while 
the relaxation kinetics is controlled by the mobile, non-
aggregated,  defects.  The  point  Tc of  phase  separation 
(defect  condensation)  in  [3]  is  identified  with  the 
Kauzmann temperature. The mobile defects disappear at 
Tc. The correlation length of the density fluctuations in 
mean-field approximation is given by

( )[ ] 21
0

/
cc TTTr −=ξ                  (25)

where 0r  has the same meaning as in (5). According to 

Eq.  (25),  at  0r ~1nm, in a close vicinity of  Tc,  i.e.  at 

cc TTT 410−− ~  the correlation length is about 102  nm, 
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whereas at  cc TTT 110−− ~  it is equal to several  nm. 

To check that the order of magnitude of 0r  chosen here 
is nearly the same as in [3] one can use the expression 
for ατ  obtained in [3]:

( )



















−

≡










 −





−=

23

0

3

0
1

/

explnexp
c

c
TT

TB
a

τ
β

ϕξττ α .

                                 (26)

Here 1<ϕ  is the concentration of defects in the two-
fluid system and β is the Kohlrausch stretch exponent (

10 ≤< β ).
By comparing (25) and (26) one has 

( )
β

ϕ−






−= 13

0 ln
a
rB    .                      (27)

As  a  realistic  estimate  (given  in  [3])  we  can  take 
10.~ϕ  and 50.=β . Then (27) gives ( ) 31

0 5 /Bar ≈ .
By fitting to experimental data, it was found in [3] 

that for ortho-terphenyl (OTP)  Tc=195 K and B = 20. 
Thus,  according  to  (27)  for  OTP  nmar 3640 ≈≈ .  
i.e.,  is  comparable  with  the  value  taken  above  for 
estimations.

The  experimentally  determined  value  of  the 
correlation length for OTP at T = 298 K is to 86 nm at T 
= 293  K.  [1,2].  The  relation  (25)  at  T  = 295K,  with 

nmr 30 = , gives nmrc 571 0 ≈≈ ,ξ  which is more than 
one  order  of  magnitude  less  than the  values  obtained 
from the light scattering and X-ray scattering data [1,2]. 

The temperature T = 293 K is estimated to be close 
to  Te for  OTP  [15],  therefore  it  lies  within  the 
temperature  range  where  the  relation  (21)  is  valid. 
Taking for OTP Rc ≈ 3nm  and a reasonable value for 

070.)~( =hc  (see (20)) we obtain nmav
210≈ξ .

The  performed  comparison  shows  that  the 
temperature  dependence  of  the  correlation  length 
predicted  by  conventional  theories  of  critical  density 
fluctuations  does  not  fit  the  experimentally  observed 
LRC even  if  the  features  3)-5)  of  the  Fischer  cluster 
(described by the theory presented here) are ignored.
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