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Recent development of the multi-density integral equation approach and its application to the statistical mechani-
cal modelling of a different type of association and clusterization in liquids and solutions are reviewed. The effects 
of dimerization, polymerization and network formation are discussed. The numerical and analytical solutions of the 
integral equations in the multi-density formalism for pair correlation functions are used for the description of struc-
tural and thermodynamical properties of ionic solutions, polymers and network forming fluids.
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1. INTRODUCTION
Ten years ago I had a possibility to have in the Beke-

tov building in Kharkiv the seminar about the modern 
state of liquid theory. On this seminar was A.I. Akhiez-
er. The subject was very interested for him. He put a lot 
of  questions  that  was  important  for  understanding  of 
problems and development of  theory.  For the last  ten 
years we try to expand the techniques developed in the 
theory of simple liquids to more complex liquids. This 
short review of our activity in this field I would like to 
devote to the unforgettable memory of A.I. Akhiezer.

The pair distribution function g(r) plays central role 
in the modern liquid state theory. It establishes a bridge 
between microscopic properties modeling by interparti-
cle interactions and macroscopical  ones such as struc-
ture, thermodynamic, dielectric, kinetic and other prop-
erties. The essenceal progress in the liquid state theory 
for the last decades is connected with the development 
of the integral equation technique which is based on the 
analytical or numerical calculation of the pair distribu-
tion  function  g(r)  by  the  solution  of  the  Ornstein-
Zernike (OZ) equation within different closures: the Per-
cus-Yevick (PY) approximation, the hypernetted chain 
(HNC) one, the mean spherical  approximation (MSA) 
and its different modifications [1,2]. The background of 
such closure relations is connected with diagram analy-
ses of the Mayer density expansions of the pair distribu-
tion function and their applicabilities are tested usually 
by comparison with computer simulation results.

However such inegral equation approach is efficient 
enough only for fluids having not so strong interparticle 
attraction  and  needs  an  essential  improvements  for  a 
more complex fluids with strong interparticle attraction 
which can lead to the clustering of particles into pairs or 
larger groups such as chains, networks, self-assemlbing 
agregates etc. Due to the clustering the δ-like intraparti-
cle  distribution  function  appears  and  the  distribution 
function can be divided into the intra- and interparticle 
parts 

)()()( rgrgrg erintraint += . (1)

In addition, resulting from clusterization the corre-
sponding running integration numbers

∫=
R

drrrgRn
0

2)(4)( π ρ , (2)

which describes the average number of particles in the 
sphere  of  radius  R  surrounding one of  them which is 
found in the center of this sphere, divides into bounded 
(intra) and nonbounded (inter) parts 

)()()( RnRnRn erintraint += , (3)

where ρ is the number density of particles.
Due to the saturation of bounding

bondraint nRn ≤)( (4)

where the number of bonds  nbond is fixed. Specifically, 
for  pairs  nbond = 1,  for  chains  nbond = 2,  for  network 
nbond = 4 etc.

Since the clusterization is  caused by the attraction 
part  of  interparticle  interaction  for  the  description  of 
their contribution it is more convinient to use the activity 
expansions instead of density ones [3]. In particular, in 
order to reproduce the correct low-density limit for the 
fluids with strong clusterization, an infinite number of 
terms in the density expansion must be included, while 
only a few terms of the activity expansions are enough 
for this purpose [4,5]. Consider, for example, the series 
in the activity Z for the pressure P and density ρ termi-
nated at n-th order terms 
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where  bn is the attraction part of the  n-th virial coeffi-
cient, )(1 kT=β  is the inverse temperature. In result of 
the strong interparticle attraction 1≤Z  and in the limit 

0→Z , ∞→nb

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 6, p. 291-295. 35



.11...3          

21

1
1

3
3

2
2

ρ

ρ

n
Zb

n
nZb

n

Zb
nn

Z
n

Zb

n
n

n
n

→−−−−

−−=

−
−

(6)

After elimination of Z from equations (5) we obtain 
the equation of state which will be changed from the ide-
al gas equation 1=ρβ P  to the equation of ideal gas of 
pairs  21=ρβ P , ideal gas of trymers  31=ρβ P ,..., 
and  in  general  the  ideal  gas  of  n-mers  nP 1=ρβ . 
Moreover  the  summation  of  the  infinite  series  in  (5) 
leads to the possibility of the self-assembling in the sys-
tem. In approximation  1

2
−= n

n bb  the expansions (5) re-
duce to the following form

( ) ,
b-1
Z     ,

1 2
22 ZZb

ZP =
−

= ρβ (7)

which is well known in the thermodynamical theory of 
micellization [6]. For this reason 0ρ=Z  can be identi-
fied with the monomer density of amphiphilic molecules 
and the divergence point  21 bZ cc == ρ  has the sense 
of the critical micelle concentration (CMC).

From these considerations it might be expected that a 
theory which combines the activity and density expan-
sions  would be  advantageous.  The  second and  higher 
terms in  the  expansions (5)  can be  interpreted  as  the 
dimers  density  2

21 Zb=ρ ,  the  trymers  density 
3

32 Zb=ρ ,...,  n-mers density  n
nn Zb=− 1ρ  correspond-

ly. Such interpretation suggests the possibility of the de-
scription of clusterization by the introducing the multi-
density formalism for this purpose. A consistent integral 
equation theory for this description of the clusterization 
in liquids has been proporsed by Wertheim [7,8]. This is 
based on the multi-density formalism in which the de-
scription in terms of the activity and density expansions 
are combined.

The multidensity formalism was reformulated in or-
der  to  treat  the effects  of  clusterization in fluids with 
spherically symmetric attraction and it was applied for 
ionic liquids [5,9-19], chain and network forming fluids 
[20,21] for the treatment of the percolation phenomena 
in the network forming fluids [22], for the adsorption of 
associative fluids in porous media [23], for the descrip-
tion of electronic structure of associative fluids [24] etc. 
Short review of the development of the multi-density in-
tegral equation approach in the theory of complex fluids 
was done in [25].

The recent progress in the application of the multi-
density integral equation approach to the modelling of a 
different type of association and clusterization in liquids 
and solution will be reviewed in this report. The general 
scheme of this approach in the framework of the two-
density  formalism with  the  applications  to  electrolyte 
and polyelectrolyte solutions will be considered in the 
second section. In the third section the possibility of the 
multi-density formalism for the description of polymer-
ization and network formation are presented.

2. TWO-DENSITY APPROACHES: THE AP-
PLICATION TO IONIC SOLUTIONS

The general  idea of  the multi-density formalism is 
conected with the separation of the potential of interpar-
ticle interaction U(r) into the bonding and non-bonding 
parts

)()()( rUrUrU nonbbond += , (8)
where Ubond(r) is some short-range attractive interaction 
which includes at least the potential energy minimum of 
U(r). The nonbonding part  Unonb(r) includes a repulsive 
part and long-range tail of U(r).

The  diagrams appearing in  the activity expansions 
for the one-point density are classified with respect to 
the number of  associative bonds incident  with the la-
belled white circle. Thus, the total number density of the 
system is  separated  into  two densities,  the  density  of 
nonbonding particles (monomers)  ρ0 and the density of 
bonding particles ρ1:

)1()1()1( 10 ρρρ += . (9)
Similarly the pair distribution function will be split-

ing into four terms
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where ρρα 0=  is the fraction of a nonbonding part of 
particles. In order to treat correctly the limit 0→α  it is 
advantageous to represent g(r) in the form [26]

)()()()()( 11100100 rgrgrgrgrg +++= . (12)
Due to saturation of bonding the restriction only by 

pair formation leads to the self-consistent relation for α

∫
∞

+=
0

2
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2 )()(41 drrrfrg asρπ αα , (13)

where  1))(exp()( −−= rUrf bondas β  is  the Mayer func-
tion for the associative interaction. At the sticky limit 
follows

)()( RrBrf as −= δ (14)
and the equations (13) can be rewritten in the form

)(41
00

2
2

RgBRπ ρ
α

α =−
, (15)

where R is diameter of particles and g(R) is the contact 
value at r = R of the pair distribution function.

The classification and topological  reduction of  the 
diagrams  for  pair  correlation  function  leads  to  the 
Wertheim's modification of the OZ equation [7,8]

∫+= )()()()( 321331212 rrrdrr XhCCh ρ , (16)

where  the  coresponding  matrices  have  the  following 
form:
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As usually, the equation (16) should be supplement-
ed by closure relations. Among them we distinguish the 
associative HNC (AHNC) closure
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where α βα βα β Cht −= ;
the associative PY (PYA) closure
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where α βα βα β Cgy −= ;
the associative MSA (AMSA) closure
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The  analytical  solution  of  AMSA  for  symmetrical 
ionic systems was obtained [9] and also generalized for 
nonsymmetrical case [12]. The essential feature of this 
result is connected with appearance of new the screening 
parameter BΓ  instead of the usual inverse Debye-Huckel 

screening length 
21

2
2

4 


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aaZe ρ
ε

π βκ . The param-

eter BΓ  depends from the fraction of free ions α and the 
sizes of ions R and is defined by 
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The  simple  analysis  of  equation  (21)  suggests  the 
consideration of two regimes [18],  namely the weak (

1→α ) and the strong ( 0→α ) association regimes.
The regime of the weak association is realized for

( )R
R

B

B

Γ+
Γ

> >≥
21

1 α

and corresponds to the traditional MSA-MAL (mass ac-
tion law) description of ion association [27] where equa-
tion (21) reduces to

( ) ( ) ( ) α222 14 kRRR BB =Γ+Γ . (22)

In  this  regime  only  the  electrostatic  contribution 
from free ions is important and the electrostatic contri-
bution from ionic pair can be neglected.

The regime of the strong association is realized for

,
21

0
R

R

B

B
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< <≤ α

where equation (21) reduces to

( ) ( ) ( ).114 23 α−=Γ+Γ kRRR BB (23)

In  this  regime only electrostatic  contribution  from 
the ion pairs is important and the contribution from the 
free ions can be neglected.

The AMSA was applied for the description of ther-
modynamic  properties  of  ionic  solutions  and  it  was 

shown that it  satisfactory reproduces the properties of 
nonaqueous electrolyte solutions of solvent of  relative 
permittivities in range  3620 << ε [18]. For ionic solu-
tions of lower permittivity the AMSA was modified by 
including the effect of ion trimer and tetramers [19]. The 
possibility  of  such  modification  of  AMSA is  enough 
promising for the description and interpretation of ther-
modynamical  and  transport  properties  of  nonaqueous 
electrolyte solutions with the enough low dielectric per-
mittivity [28].

3. THE MULTIDENSITY APPROACHES: 
CHAIN AND NETWORK FORMATIONS
For the particles having more than one bonding state, 

the formation of chains, rings, networks and more com-
plex agregates is possible. Such agregates can be consid-
ered as a collection of monomers (segments) bonded at 
asymmetric attraction sites. In general for the particles 
with  M bonding sites the density is  separated into 2M 

densities of different bonding states. The diagram analy-
sis leads to the generalized version of the OZ equation 
which has the form similar to (16) where in general case 
h, C, X are the matrices MM 22 × . In general 2M-1 self-
consistent  relations  are  needed  instead  of  the  relation 
(13)  for  the  pairing case.  Some simplification can be 
connected with the approximation that the bond creation 
between two particles is independent of the existence of 
other bonds. As a result, the fraction of the particles that 
have Mn ≤  bonded neighbors can be given by the bi-
nomial distribution

,)1(
)( nMnMn

M pp
n
Mn

x −−





==

ρ
ρ

(24)

where α−= 1p , α is the fraction of particles nonbond-
ed by one fixed site.

For  example,  for  the  particles  with  two  attractive 
sites A and B (one is donor, the other is acceptor) the as-
sumption  (24)  leads  to  the  ideal  chain  approximation 
(ICA)  [29]  and  m=1/α can  be  consider  as  the  mean 
chain length.

The analytical  solution of  the  OZ-like  equation in 
polymer PY (PPY) approximation for the chain forming 
fluids  in  ICA approximation  for  the  case  when bond 
length  L = R was obtained and discussed in [29].  The 
generalization of this result for the case RL ≤  was con-
sidered in [20]. In the ICA approximation the formation 
of the ring polymers is  neglected.  This approximation 
can  be  used  to  describe  a  system of  chain  polymers, 
polydisperse  in  length  that  is  characterized  by a  pre-
scribed mean chain length m. As example of such case 
the application of PPY theory for the description of the 
structure of liquid sulfur was discussed [30].

For the molecules with four attractive sites  A,  B,  C 
and D (the two are donors and the two are acceptors) the 
assumption (24) leads to the ideal network approxima-
tion (INA) [21,22].  The analytical solution of the OZ-
like equation for the network  forming fluids  in network

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2000, №2.
Серия: Ядерно-физические исследования (36), с. 3-6.
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Fig. 1. The predicted from NPY-INA approximation  
structure factor of network forming fluids at  25.0=η  
for  different  strength  of  bonding  Bs:  Bs = 0  (dotted 
line); Bs = 0.1 (dashed line); Bs = 30 (solid line)

PY (NPY) and INA approximation was done in [21]. 
The structure factor calculated for the model of associat-
ing hard spheres with four symmetrical bonding sites is 
presented in Fig. 1. It can be display the strong changes 
in  S(k)  caused  by  increasing  of  association
constant Bs. For the network forming fluid similar as for 
chain forming fluid [20] at small number region of k the 
pre-peak appears connected with the forming of relative-
ly large clusters. Due to the correlation between them, 
the ordering in mesoscopic scale appears, so-called in-
termediate-range order [31].

The number of the bonding states of molecules can 
principally change the thermodynamic properties of flu-
ids [25].  For example,  the formation of  finite  m-mers 
leads to increasing of the liquid-gas critical temperature 
and the decreasing of critical density. For network form-
ing fluids there are a new mechanism of critically con-
nected with the network formation.

The multidensity integral equation theory was refor-
mulated for studying connectedness properties in order 
to understand a peculiarity of the network forming flu-
ids. The division of the potential of interparticle interac-
tion into the blocked and connectedness parts

)()()( * rUrUrU += + (25)

leads to the similar separation also for the pair and direct 
correlation functions

).()()(     ),()()( ** rrrrrr CCChhh +=+= ++ (26)

The connectedness pair and direct  correlation func-
tions satisfy the OZ equation similar to (16). The mean 
cluster size is given by

∫ ++= )(1 rhrdS ρ (27)

As the percolation transition is approached  S increases 
and becomes infinite at  the percolation threshold.  The 
connectedness version of the OZ equation supplemented 
by the NPY-like closure and INA ap proximation was 
solved analytically [22]. In this approximation

Fig. 2. The phase diagram of network forming fluid  
in NPY-INA approximation: the spinodal (broken line) 
and percolation (solid line) curves

2

2

)31(
)24(

3
4

α
αα

−
−+=S (28)

It is seen that ∞→S  when 31→α . The spinodal 
(broken line) and percolation (solid line) curves in the 

coordinats the density  3

6
1 Rπ ρη =  and the temperature 

1* )( −∈= βT  is presented in Fig. 2, є is the square-well 
parameter  of  intersite  bonding.  The  Fig. 2  shows that 
liquid phase including the critical point is inside the per-
colation region.

4. CONCLUSIONS
The characteristic features of numerous complex liq-

uids are connected with associating the molecules into a 
different  clusters  caused by strong interparticle  attrac-
tion. The starting point of the theory of such liquids is 
the  combined  cluster  expansions  for  pair  correlation 
function in which the activity expansions are used to de-
scribe the contribution of the bonding part of the inter-
particle interactions while the usual density expansion is 
used to describe of nonbonding part of interactions. The 
diagram analysis of these cluster expansions leads to the 
multi-density integral equation approach which is flexi-
ble enough to treat different associative features of liq-
uids such as dimerization, polymerization, network for-
mation, self-assembling etc.

The possibilities of the theory are tested by compar-
ing with computer simulations. It is shown that the mul-
tidensity  approach  essentially  improves  the  integral 
equation theory for ionic systems. The analytical solu-
tion of AMSA is useful for the description of thermody-
namic and kinetic properties of nonaqueous electrolyte 
solutions in a wide range of ionic concentration special-
ly for the solvents with enough low dielectric permittivi-
ty.

The  multidensity  integral  equations  are  solved  for 
polymerization and network formation cases. It is shown 
that structure factor for chain and network forming flu-
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ids exhibits a peculiarity at small wave number connect-
ed with the forming of relatively large molecular clus-
ters. The multidensity integral equation theory is refor-
mulated  for  studying  the  connectedness  properties  of 
network forming fluids. The gas-liquid critical point is 
predicted to exist for network case, and a region of liq-
uid state is inside the percolation region.
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