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Concepts of linear nuclear power systems of slow burning with breeding are briefly discussed. The propagation 
of the nuclear fission wave in a long thermal fission reactor (without breeding) is considered. The evolution of the 
neutron density profile with time is determined. The velocity of the burning front is estimated.
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1. INTRODUCTION
Last two decades, and especially after the Chernobyl 

accident, a great interest was shown in new concepts of 
fission  nuclear  reactors,  as  they  were  named  safe 
reactors.  One  of  such  well  known proposals  was  the 
concept by C. Rubbia et al.[1].  The matter concerns a 
subcritical  nuclear  reactor  driven  to  criticality  by  a 
powerful accelerator system.

Another one was the conceptual design by E. Teller 
and al.[2] of a slow burning reactor with a completely 
automated system of operation and power output.  The 
relative  safety  of  slow  burning  concept  lies  in  the 
necessity to produce, or breed the fissile fuel (e.g., 239Pu) 
from fertile (238U) in front of the moving wave of nuclear 
burning. Thus, the wave velocity, and the power output, 
depends on the sluggishness of the breeding process.

But  chronologically  earlier  the  first  ideas  of  the 
slowly  burning  safe  reactor  were  advanced  by 
L. Feoktistov in 1989 [3].

2. REACTOR OF FEOKTISTOV
To describe the propagation of the nuclear burning 

wave Feoktistov [3] maximally simplified the problem 
and  considered  only four  components  (neutrons,  238U, 
239U,  240Pu) of the open nuclear  reaction sequences of 
U-Pu fuel cycle

238U (n,γ) 239U
239U → (β) → 239Pu
239Pu (n,fission) ...

These resulted in a set of diffusion-reaction equations 

( )( )dn
dt

D n vn N Na a f= + − +∆ σ σ σ8 8 Pu Pu ,

dN
dt

vn Na
8 = − σ 8 8 , 

dN
dt

vn N Na
9

9= −σ
τ β

8 8
1

,

( )dN
dt

N vn Na f
Pu

Pu Pu= − +1
9τ

σ σ
β

.

for  the corresponding densities  of  neutrons,  238U, 
239U, and 239Pu. Here v  is the mean neutron velocity and 
σ σa f, ,  are the absorption and fission cross-sections. It 
should  be  emphasized  that  the  slowness  or  the 
sluggishness of the burning process is ensured here by 
the very large time ( τ β =2.4 days for U-Pu cycle) and 
24.5  days  for  Th-U cycle).  Similar  equations  can  be 
written for Th-U cycle with τ β =24.5 days.

In the self-similar approach, when the densities of all 
reaction components are moving with the same velocity 
V  and  depend  on  the  unique  variable  z x Vt= + , 
Feoktistov has proved the existence of a slowly moving 
front  of  nuclear  burning.  To  illustrate  his  results  we 
obtained the exact numeric solution of above equations 
(in  the  self-similar  approach)  and  presented  them  in 
Fig. 1 (a,b) and Fig. 2 (a,b) as functions of ζ = z l/  ( l  
is the neutron migration length).

One can see the soliton-like moving front (from left 
to  right)  of  the  nuclear  reaction  where the  density of 
neutrons is  enhanced (Fig. 1 a).  The  raw 238-uranium 
material  (Fig. 1 b)  existing  in  front  of  the  reaction  is 
burned out behind the moving front. And just in front or 
the  moving  burning  wave  a  layer  of  the  newly born 
Plutonium-239  (Fig. 2 a)  is  formed  due  to  breeding, 
which is burned out to some extent after the wave has 
passed. The reaction intermediate product uranium-239 
also can be seen as moving with the front (Fig. 2 b). The 
velocity  V  of  the  burning  front  depends  on  the 
parameters  of  the  system  through  the  ratio  of  two 
Plutonium concentrations, equilibrium and critical. The 
described  process  was  named  in  [3]  as  neutron 
fissioning wave.

An  expansion  of  this  work  was  done  later  by 
V. Goldin  et  al.  [4,5].  They  have  used  the  idea  by 
Feoktistov  of  self-adjusting  neutron-nuclide  regime, 
described it,  however, in a much more comprehensive 
model.  They  applied  a  multi-group  description  of 
neutrons and an accompanying system of 16 equations 
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Fig. 1. The dependence of neutron (a) and U238 (b)  
relative  densities  in  Feoktistov  reactor  on  the  self-
similar coordinate ζ = z l/
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Fig. 2. The  dependence  of  Pu239 (a)  and  U239 (b) 
relative  densities  in  Feoktistov  reactor  on  the  self-
similar coordinate ζ = z l/

of isotope burn-out. But they considered [5], in fact, a 
heterogeneous  reactor  with  alternating  layers  of 
differently  enriched  fissile  isotope  as  a  nuclear  fuel. 
Actually, in their case, several burning fronts are slowly 
moving during the reactor campaign through a distance 
not exceeding the wavelength.

3. SLOW NUCLEAR BURNING IN A FULLY 
AUTOMATED REACTOR OF TELLER

Teller and al.[2] advocated a slow burning reactor with a 
fully automated system of power output. The process of 
nuclear  burning  was  calculated  numerically  within  a 
cylinder geometry of the reactor. They have employed 
175  neutron  energy-group model.  Reactor  design  was 
resolved into several hundred spatial  zones and a few 
hundred different materials. Sixteen isotopes are usually 
carried in each zone, representing both fertile and fissile 
isotopic  components  of  nuclear  fuel,  in  addition  to 
reflector and coolant elements, structural materials, and 
various  neutronic  poisons,  including  fission  products. 
The detailed results  were not  published, but  the time-
running of the reactor can be seen in Fig. 3 ( z  is the 
distance  along the cylinder  reactor  axis).  Teller  et  al. 
considered,  unlike  Feoktistov,  Th-U fuel  cycle:  (232Th 
(n,γ) 233Pa; 233Pa → (β) → 233U; 233U (n,fission)...).
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Fig. 3. Operation of Teller fully automated reactor  
in time (a) after 7.5 years; (b) at the end of campaign  
after 30 years

One  can  see  the  same  processes  to  evolve  as 
described  by  the  simplified  equations  of  Feoktistov: 
slow movement of the wave where the density of  the 
fissile 233-Uranium and a power release are enhanced 
and a burned-out zone (depleted of Thorium) remained 
behind the front.
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4. “SLOW” BURNING IN A THERMAL 
REACTOR

As a  first  step  to  tackle  the  problem of  the  slow 
burning  in  a  breeder,  we  started  with  a  hypothetical 
problem of  the  moving front  of  nuclear  burning in  a 
thermal  reactor  [6].  We  show that  a  moving front  of 
nuclear  burning  exists  in  this  case  also.  However,  its 
propagation  velocity  will  be  much higher  determined 
mainly  by  the  neutron  diffusion.  Contrary  to  the 
previous cases, the breeding will be absent, and with it 
the time consuming stage with β -decay also.

4.1. FORMULATION OF THE PROBLEM
Let’s consider fissile medium in a form of a prolate 

infinite  quadratic  ( a a× )  prism.  The  equation  for 
neutron density ( )n tr,  has a form
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Here D  is the diffusion coefficient of thermal neutrons 
and τ c  is the neutron lifetime in relation to the capture. 
The  quantities  ϕ θ, f  in  Eq. (1)  describe, 
correspondingly, the probability that a fast neutron will 
be  slowed  down  to  a  thermal  energy,  not  being 
resonantly  captured  by  the  nuclei  238U,  and  the 
probability  of  absorption  of  a  thermal  neutron  by  a 
nucleus of uranium. The first term in Eq. (1) is due to 
neutron  diffusion,  the  second  to  the  absorption  and 
fission losses,  an the last  one is  a  nonlocal  source of 
newly created fission neutrons. It describes the density 
of slow neutrons, produced as a result of the slowing-
down  of  fast  neutrons.  The  characteristic  length 
parameter  r0  is an average length of neutron slowing-
down.

The initial and edge conditions are
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Searching for solution in the form
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where  D *  is  an  effective  coefficient  of  diffusion, 
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is the neutron multiplication (reproduction) factor for a 

reactor  of  finite  transversal  size  a .  If  A* < 0 ,  the 
number of neutrons, born in nuclear fission reactions, is 
deficient  to  sustain  a  self-maintained  chain  nuclear 
reaction,  i.e.  we  have  a  subcritical  regime.  With  the 
increase of the characteristic size  a  the parameter  A*  
becomes positive (we suppose  ν θ ϕf > 1 ), and we pass 
into the region of overcritical  regime. Notice,  that the 
condition A* = 0  determines the critical transverse size 
of a system, where a chain reaction can be realized,
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In the overcritical region A* > 0  the self-sustaining 
chain  reaction  is  possible,  that  is  manifested  in  the 
exponential growth with time of neutron density at every 
point of space.

4.2. EVOLUTION OF NEUTRON DENSITY 
FLUCTUATION

Let us examine the evolution of fluctuation of the 
density of thermal neutrons that has some constant value 
n0  in  the  range  − ≤ ≤l z l  at  the  initial  moment  of 
time. In this case Eq. (5) can be simplified and takes the 
form  (at  large  distance  from  the  initial  fluctuation, 
z l> > )
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Eq. (7)  describes  diffusion  of  thermal  neutrons  taking 
into account their multiplication. It can be simplified in 
some important cases.  First, asymptotic expression for 
increasing z  and fixed t : z t→ + ∞ =, const , 
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Second,  asymptotic  expression  for  increasing  t  and 
fixed z : t z→ + ∞ =, const ,
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The first of the above two cases corresponds to an 
"instant" picture of neutron density distributed along the 
cylinder  axis,  and  the  second case  describes  the  time 
evolution  of  neutron  density  at  each  given  point  z . 
According  to  Eqs. (8), (9)  one  can  see,  that  at  large 
distance  from  the  fluctuation  the  density  ( )n z t,  
exponentially decreases with distance, and at large time 
it grows exponentially with time due to multiplication.
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A characteristic  feature  of  multiplicating  medium, 
according to  Eq. (8),  is  the existence of such velocity 

( )v z l t v= − =/ 0  of the moving point of observation, at 

which the observed density of thermal neutrons  ( )n z t.  
very slowly decreases with distance and is given by
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Such sharp change in the asymptotic behavior is the 
characteristic feature of multiplicating medium and may 
be physically explained by the compensation (along the 
ray  z v t l= +0 )  of  the  exponential  growth,  caused  by 
neutron multiplication,  by the exponential  decrease of 
neutron density with distance. Namely, the decrease of 
neutron  density  with displacement at  the  distance  δ z  
will be compensated by the increase of neutron number 
in the multiplication process during the time δ t , needed 
to perform the above displacement.

The velocity v0  may be named the velocity of slow 
nuclear  burning  in  a  system.  Indeed,  in  the  case  of 
conventional (chemical) slow burning [7], which results 
in the achievement of a certain reaction temperature, the 
velocity  of  slow  burning  is  proportional  to  χ τ/ , 
where  χ  is the temperature conductivity, and τ  is the 
characteristic reaction time. In our case the problem is in 
the  achievement  of  some  fixed  neutron  density  at  a 
given point, caused both by multiplication and diffusion. 
The lifetime of neutron τ c  acts as a characteristic time 
of reaction, and the geometric mean of diffusivity and 
multiplication  parameter  A*  plays  the  role  of  the 
transfer coefficient. The essential role of multiplication 
process is supported by the fact that the velocity of slow 
nuclear  burning  goes  to  zero  at  A* = 0 .  This  is 
consistent  with  the  fact,  that  the  velocity  of  purely 
diffusion process tends to zero at great distance from a 
source ( dz dt D z z/ / ,≈ → ∞ ).

The neutron density can not grow unrestrictedly as 
above in  linear  problem,  first  of  all  due  to  the  finite 
quantity of fuel. One can account for this introducing a 
nonlinear factor 

( )1 0− N t, / N c (11)
in the equation for neutron density
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where  ( )N t0,  is  proportional  to  the  total  number  of 
neutrons 

( ) ( )N t n z t dz0 2
0, ,= ∞

∫π
and  N c  is  a  sufficiently  large  given  constant.  This 
procedure is  described in detail  in [8]  and we do not 
dwell on it any more.

Similar, though mostly local, nonlinear equations are 
familiar  in  diffusion-reaction  problem  in  physical 
chemistry  and  other  fields.  The  most  known  is  the 
differential  equation  [9]  describing  the  processes  of 
genes  dessimination and  struggle  for  survival.  With  a 
nonlinear term written down in a more general form it 
was  thoroughly  investigated  by  A.N. Kolmogorov, 
I.G. Petrovsky  and  N.S. Piskunov  [10].  It  was,  in 
particular,  shown  that  the  asymptotic  velocity  of 
propagation  of  the  travelling  wave  solution  could  be 
also  introduced.  This  velocity  coincides  with  the 
velocity v0  obtained in this paper.
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