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INTRODUCTION
It was Jeans who in 1915 firstly proposed to use a 

kinetic equation with a self-consistent gravitational field 
and  consider  stars  as  the  gas  of  particles  in  order  to 
investigate  some  problems  of  astrophysics  and 
cosmology. Twenty years later  the analogous equation 
with  the  self-consistent  electromagnetic  field  was 
formulated and used by A.A. Vlasov to study oscillating 
properties of the electron-ionic plasma. In this report we 
use  a  kinetic  equation  with  the  self-consistent 
gravitational  field  for  the  investigation  of  different 
cosmological models. When studying the cosmological 
models it is typical to use the hydrodynamic approach. It 
assumes the matter equilibration, when it is possible to 
speak about its equation of state, but as we show below 
there  is  no  especial  necessity  in  the  hydrodynamic 
approach and the whole problem can be investigated in a 
more general kinetic approach. With this consideration 
there is no need to introduce the assumption about the 
matter equilibrium and to know its equation of state.

First  of all  we derive the kinetic  equation with the 
self-consistent gravitational field in the general relativity 
theory. Further we derive an energy-momentum tensor 
and  vector  of  the  current  of  particles  using  a 
relativistically invariant distribution function. We relate 
the obtained energy-momentum tensor to the space-time 
curvature  tensor  according  to  the  Einstein  equations. 
This allows investigating different cosmological models 
which  represent  common  and  consistent  solutions  of 
both the  kinetic  equation and  Einstein equations.  The 
kinetic  approach  allows  to  describe  the  evolution  of 
relict distributions of particles as solutions of the kinetic 
equations  if  we  assume  that  the  Universe  expansion 
resulted  in  the  separation  of  the  interaction  of  the 
particles from the rest of matter in the distant past.

1. RELATIVISTICALY INVARIANT 
DISTRIBUTION FUNCTION AND KINETIC 
EQUATION WITH A SELF-CONSISTENT 

GRAVITATIONAL FIELD
1.1. Relativistically  invariant  distribution  function 

and  Energy-momentum  tensor  in  the  presence  of  a  
gravitational field. Now we focus our attention at the 
construction  of  a  relativistic  kinetic  equation  without 
account  collisions  for  the  gravitationally  interacting 
particles.  Let  us  denote  the  four-trajectory  of  the r-th 
star (particle) with the mass mr by  ( )rr τξ  ( rτ  is the 
proper time of the r-th star). Then the four-velocity of 
this  star  is  ( )rr τξ .  In  the  special  relativity  theory  a 
random relativistically invariant distribution function of 
stars over the positions x , velocities µu  and masses m  
is given by

( )( ) ( )( ) ( ).mmux
r

rrrrr∑ −δτξ−δτξ−δ 

We  want  to  note  that  under  the  general 
transformations  of  the  space-time  coordinates  µx , 

( )x'x'xx µµµ =→ ,  the  coordinates  ( )τξ µ  of  the 

particles and their four-velocities ( )τξ µ  transform as

( ) .
x
x,x

x

ν

ξ=
ν

µ
µµµµµ ξ

∂

′∂=ξ ′→ξξ′=ξ ′→ξ 

That gives us the reason why in the general  relativity 
theory,  unlike  the  special  relativity  theory,  the  δ -
functions ( )rx ξ−δ  and ( )ru ξ−δ   are not invariants but 
transform obeying the formulae for densities

( ) ( ) ( )
,

x/x
x

xx r
rr ∂′∂

ξ−δ
=ξ ′−′δ→ξ−δ (1.1)
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( ) ( ) ( )
,

xx
u

uu r
rr ∂′∂

ξ−δ
=ξ ′−′δ→ξ−δ




moreover,  the  quantities  x ,  u  must  transform  in 
accordance with the formulae

( ) ( ) ( ) ( ) ,xu
x
xxuxu,xxxx ν

ν

µ
µµ

∂

′∂=′′→′=′→ (1.2)

i.e. ( )xu ν  must also depend on x  and be interpreted as 

the four-velocity of a particle at the point x  ( xx ∂′∂  is 
the Jacobian of (1.2)).

Bearing  in  mind  that  under  the  space-time 
transformations  the  determinant  of  the  metric  tensor 

( )xgµ ν  ( µ ν≡ detgg ) transforms as

( ) ( ) ( ) ,
x
xxgxgxg

2

′∂
∂=′′→

we  can  see  that  the  quantities  ( ) gx r −ξ−δ , 

( ) gu r −ξ−δ   will  be  invariants.  Therefore,  the 
relativistic invariant distribution function in the general 
relativity theory can be defined by

( ) =m;u,xf (1.3)

( ) ( )( ) ( )( ) ( ) ,mmuxd
xg r

rrrrrr∑ ∫
+ ∞

∞−
−δτξ−δτξ−δτ− 1

where the brackets  ...  are used to denote the average 

over the random coordinates rξ , random velocities rξ  
and random masses rm  taken at a certain initial moment 

of  the  proper  time  0τ=τ r .  The  coordinates  ( )τξ r  
satisfy the equations of motion

( ) ,rrr
ρνµ

ν ρ
µ ξξξΓ−=ξ  (1.4)

where µ
ν ρΓ  are the Christoffel symbols

( ) .
x

g

x

g

x

g
gx 






∂

∂
−

∂

∂
+

∂

∂
Γ

λ
ρ ν

ν
λ ρ

ρ
λ νµ λµ

ν ρ 2
1

(1.5)

Let us explain the integration over  τ  introduced here. 
For this purpose we shall consider the integral over τ  of 
the  product  of  one-dimensional  δ -functions 

( )( ) ( )( )τξ−δτξ−δ 0000 ux .  This  integral,  evidently,  is 
equal to

( )( ) ( )( ) =τξ−δτξ−τ δ∫
+ ∞

∞−

0000 uxd

( ) ( ),uuu
u

u
12 0

0
0 −δΘ µ

µ

where Θ  is the Heaviside function and 0u , 0u  are the 
covariant  and  contravariant  time  components  of  the 
four-velocity.  As  a  result  the  relativistically  invariant 
distribution function assumes the form

( ) ( ) ( ) ( ) ,m;,xfuuum;u,xf u12 0 −δΘ= µ
µ (1.6)

where

( ) ( ) ×−=
0
01

u

u
xg

m;,xf u (1.7)

( )( ) ( )( ) ( ) ( )0x,mm
r

rrr τ=τ−δτ−δτ−δ∑ uuξx

is  the  usual  relativistically  noncovariant  distribution 
function satisfying in accordance with the definition the 
following normalizing condition

( ) ( )∫ ∫
∞

=−
0 0

0
33 m;,xf

u
uxdmguxdd u (1.8)

( ) ( ) Nm;u,xfuxdmgudxd =− ∫ ∫ ∫
∞

0

044

( N  is  the total  number of  stars).  Therefore,  the total 
mass of stars will be given by

( ) ( ).m;,xfuxdmmgudxdM ∫ ∫∫
∞

−=
0

044 u (1.9)

We want  to  note  that  the  relativistically  invariant 
distribution  function  does  not  change  under  the 
transformations  of  the  four-coordinates  µx  and  four-
velocities µu

( ) ( );xu
x
xuu,xxxx ν

ν

µ
µµµµ

∂

′∂=′→′=′→

it means that the function is a scalar
( ) ( ) ( ).m;u,xfm;u,xfm;u,xf =′′′→ (1.10)

Now  we  introduce  the  four-vector  ( )xJ µ  of  the 

mass  flux  density  and  the  four-tensor  ( )xT µ ν  of  the 
energy-momentum.  It  is  known  that  in  the  special 
relativity theory the mass flux vector ( )xJ µ  and energy-
momentum tensor of a point particle are determined by 
the following formulae

( ) ( ) ( )( ) ,xmdxJ τξ−δτξτ= ∫
+ ∞

∞−

µµ 

( ) ( ) ( ) ( )( ).xmdxT τξ−δτξτξτ= ν
+ ∞

∞−

µµ ν ∫ 

Thus,  in  the  general  relativity  theory  the  quantities, 
( )xJ µ , ( )xT µ ν  referred to a system of particles have in 

accordance with (1.1) the form

( ) ∫ ∫
∞

µ ×−=
0

4uddmgxJ

( ) ( ) ( ) ,mm
g

u
g

x
mud r

r

r

r
r −δ

−
ξ−δ

−
ξ−δ

τ∑ ∫ µ
∞+

∞−



( ) ∫ ∫
∞

νµµ ν ×−=
0

4 uumuddmgxT

( ) ( ) ( )r
r

r

r
r mm

g
u

g
x

d −δ
−

ξ−δ
−

ξ−δ
τ∑ ∫

∞+

∞−



( udg 4−  is  an  invariant).  Averaging  ( )xJ µ  and 

( )xT µ ν  over the random coordinates and velocities at 

the moment 0τ  we get
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( ) ( ) ( ) ,m;u,xfuuddmmxgxJ ∫ ∫
∞

µµ −=
0

4 (1.11)

( ) ( ) ( ).m;u,xfuuuddmmxgxT ∫ ∫
∞

νµµ ν −=
0

4

We emphasize that here the quantities  µx  and  µu  
are  the  generalized  coordinates  and  velocities 
characteristic for the general relativity theory and they 
may not have the metric meaning.

1.2.  Kinetic  equation  with  a  self-consistent  
gravitational field. Now we derive a kinetic equation for 
the relativistically invariant distribution function f . To 
this  end it  should be  noted that  the following evident 
relation is valid

( )( )∑ ∫ ×τξ−δ
τ

τ
+ ∞

∞−r
rr

r
r x

d
dd (1.12)

( )( ) ( ) .mmu rrr 0=−δτξ−δ 

Performing  in  this  formula  the  differentiation  with 
respect to rτ  and using the δ -functions which enter the 
equation (1.12) we can obtain according to (1.4)

( ) ,gfx,uF
uxx

u
x

u 0=












∂
∂+











∂
∂

∂
∂−

∂
∂ µ

µνµ

ν

µ
µ

where
( ) ( ) ρνµ

ν ρ
µ Γ−= uuxx,uF (1.13)

(the derivatives µ∂∂ x , ν∂∂ u , µ∂∂ u act also on the 
function  gf ;  we  assume  that  the  four-velocity 
components ( )xuµ  depend on x ). Noting that

,
x
g

g
,u

u
F ν

µ νµ
µν

µ νµ

µ
Γ=

∂

∂Γ−=
∂

∂ 212 (1.14)

we have

.f
ux

uuF
x

u 0=












∂

∂











∂

∂−+
∂

∂
µν

µ
νµ

µ
µ

Recalling the definition of the covariant derivative of the 
contravariant four-vector

ρµ
ν ρν

µ
µ

ν Γ+
∂

∂= u
x
uuD (1.15)

and using the formula (1.13) we finally obtain

.f
u

uD
x

u 0=








∂

∂−
∂

∂
ν

ν
µµ

µ (1.16)

If  one  considers  the  four-velocity  µu  being 
independent of x , then the equation (1.16) will lose its 
explicit covariance but take a more evident form

( ) .f
u

uux
x

u 0=








∂

∂Γ−
∂

∂
µ

ρνµ
ν ρµ

µ (1.17)

We have hitherto assumed that the gravitational field 
is  in  no  way related  to  the  distribution  function  f . 
Further  we  shall  be  interested  in  the  self-consistent 
problem, where the field ( )xgµ ν  itself is determined by 

the distribution function. With this purpose the Einstein 
equations for the metric tensor ( )xgµ ν

,GTRgR µ νµ νµ ν π=− 8
2
1

(1.18)

where µ νR  is a contracted curvature tensor and µ νT is 
an energy-momentum tensor governed by (1.11) ( G  is a 
gravitational constant), must be attached to (1.17). Thus, 
the full system of equations for the distribution function 
f  and field µ νg  is determined by (1.17), (1.18).

We  have  seen  that  the  relativistically  invariant 
distribution functioncontains as a multiplier the quantity 

( ) ( )10 −δΘ µ
µ uuu ,  which indicates that this function is 

non-zero  only  when  1=µ
µ uu  and  00 >u  (the  first 

relation is  connected with the fact  that  τ  is  a proper 
time of  a  particle  and  the  second,  that  0u  is  a  time 
component of the four-velocity). Such a structure of the 
relativistically  invariant  distribution  function  must  not 
contradict the kinetic equation (1.17).

2. THE EINSTEIN EQUATIONS AND 
KINETIC EQUATION WITH A SELF-

CONSISTENT GRAVITATIONAL FIELD
2.1.  Covariant  Conservation  Laws.  Since  we  are 

interested in the self-consistent  problem of a  common 
and consistent solution of the Einstein equations (1.18) 
and kinetic  equation (1.17)  and since for  an arbitrary 

µ νg  the following relation holds

,RgRD 0
2
1 =





 − µ νµ ν

ν

we must make sure that owing to the kinetic equation 
(1.17) the relation

0=µ ν
ν TD (2.1)

is  valid.  Using  the  definition  (1.11)  of  the  energy-
momentum tensor we get

+
∂

−∂

−
=

∂

∂ µ ν
νν

µ ν
T

x

g

gx
T 1

.
x
fuuuddmmg

ν

∞
νµ

∂

∂
− ∫ ∫

0

4

Taking into account, further, the kinetic equation (1.17) 
and integrating by parts over the variable µu  we obtain

∫ ∫
∞

µνρ
ν ρν

µ ν
ν

µ ν
−Γ−−

∂

−∂
=

∂
∂

0

42 fuuuddmmg
x

g
T

x
T ln

∫ ∫
∞

ρνµ
ν ρΓ−

0

4 .fuuuddmmg

Making use again of the definition of the tensor  µ νT  
and noting that
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ρ
ν ρν

Γ=
∂

∂

x

g-ln

we have

.TT
x

T 0=Γ+Γ+
∂

∂ ν ρµ
ν ρ

µ νλ
ν λν

µ ν

Remembering the definition of the covariant derivative 
of the tensor µ νA

µ λν
λ ρ

λ νµ
λ ρρ

µ ν
µ ν

ρ Γ+Γ+
∂

∂= AA
x

AAD

we come to the relation (2.1). It expresses the covariant 
conservation  law of  energy-momentum in  the  general 
relativity  theory  (to  obtain  the  ordinary  conservation 
laws we must, as it is known, add an energy-momentum 
pseudotensor  of  the  gravitational  field  to  the  quantity 

µ νT ).

In a similar manner the covariant conservation law of 
the four-vector of mass flux density can be obtained

.JD 0=µ
µ (2.2)

This  law,  unlike  the  conservation  law  of  energy-
momentum, can be easily put in a form of an ordinary 
conservation  law.  Indeed,  using  the  definition  of  the 
covariant derivative (1.15) and the relation (1.14) we get

( ) ( ) ( ) ,xJgxj,
x

xj µµ
µ

µ
−==

∂

∂ 0 (2.3)

where the quantity  ( )xJ µ  is related to the distribution 
function  f  by  (1.11).  This  relation  ensures  that 

( )∫ xjxd 03  is  independent  of  0x .  This  quantity  in 
accordance with (1.11) defines a total mass of particles 
(stars; see. (1.9))

( ).xjxdM ∫= 03 (2.4)

2.2.  Solution  of  the  Kinetic  Equation  for  the  
Spatially-Homogeneous and Isotropic Metric. We want 
to  find  a  certain  class  of  solutions  for  the  kinetic 
equation in the simplest case of spatially-homogeneous 
and isotropic metric. In a synchronous reference system, 
where  100 =g ,  00 =ig ,  ( 321 ,,i = )  this  metric  is 
determined by

( ) ,dxdxxgdl,dldtds ki
ik−=−= 2222

where

( ) ( ) ( ) ,gxaxg ikik x002= (2.5)

( )0xa  is a certain function of time and 0
ikg  is a function 

of  space  coordinates  alone.  The  time  0xt ≡  is 
interpreted  as  the  unique  common  time  shown  by  a 
clock at rest with respect to this reference system and 

2dl  defines a space metric at the moment t . Note that 
the  synchronous  reference  system represents  a  system 
moving  together  with  matter  if  the  forces  between 
particles of matter are only of gravitational nature.

In the synchronous reference system the quantity 0u  
entering the kinetic equation (1.17), is of the form

( ) .xguuu ik
ki−= 10 (2.6)

For the case of the spatially-homogeneous and isotropic 
distribution of  particles,  that  we are interested  in,  the 
distribution function f  depends only on the time t  and 

space  invariant  of  the  squared  velocity  ( )xguu ik
ki  

(only  the  quantity  ( )xg ik  entering  this  expression 
contains  the  dependence  on  space  coordinates;  in  the 
Euclidean case homogeneity and isotropy correspond to 
the fact that the distribution function depends only on t 
and  u , but it is independent of  x ). Thus, in the case 

under  consideration  the  distribution  function  f  is 

dependent only on two arguments, t  and 0u

( ) ( ).u,tfu,xf k 0= (2.7)

Using the definition of the Christoffel symbols (1.5) 
and  remembering  that  100 =g ,  00 =ig ,  the  kinetic 
equation (1.17) can be represented as

.
u
f

u
u

a
a

t
f 01

00

20
=

∂

∂−+
∂
∂ 

We  see  that  in  the  case  of  the  homogeneous  and 
isotropic metric the solution of the kinetic equation can 
be  found  in  the  form  (2.7).  Evidently,  the  general 
solution of this equation has the form 

( ) ,utaff 





−= 1

20

where  f  is  an  arbitrary  function  of  one  argument. 
Using the definition of 0u  (see (2.6)) we get

( ) ( ) .uugtafu,xf ki
ik

k 


 −= (2.8)

3. RELATIVISTIC COSMOLOGICAL 
MODELS

3.1.  Spatially-homogeneous  and  isotropic  solutions  
of  the  Einstein  equations  and  kinetic  equation. The 
obtained  distribution  function  of  particles  in  the 
spatially-homogeneous  and  isotropic  case  allows  to 
determine  according  to  (1.11)  the  energy-momentum 
tensor  ( )xT µ ν  (with  the  unknown  quantity  ( )ta ). 
Making  the  substitution  of  the  found  expression  for 

( )xT µ ν  in the Einstein equation we can get an equation 

for the determination of ( )ta . 
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Using  the  spherical  coordinates  we  have  the 
following relations:

-in the case of the closed cosmological model

( ) ( +ϑχ+χ= 2222 ddtadl 2sin

),d 2ϕϑχ 22 sinsin (3.1)

,,, π<ϕ<π<ϑ<π<χ< 2000

-in the case of the open cosmological model

( ) ( +ϑχ+χ= 2222 ddtadl 2sh

),d 2ϕϑχ 22 sinsh (3.2)

,,, π<ϕ<π<ϑ<∞<χ< 2000

-and in the case of the Euclidean model

( ) ( +ϑχ+χ= 22222 ddtadl

),d 22 ϕϑχ 2sin (3.3)

.,, π<ϕ<π<ϑ<∞<χ< 2000

The quantity ( )ta  entering the first two formulae for the 
closed  and  open  models  has  the  meaning  of  the 
curvature  radius  of  the  three-dimensional  space  (the 
curvature  tensor  ikP  of  the  three-dimensional  space 

equals  ( ) ikik gaP 21±= ).  Here  we  shall  consider  in 
greater detail the case of the closed model and give only 
final results referring to the open and Euclidean models.

In the case of the closed model non-zero components 
of the metric tensor µ νg  are

,ag,g 2
1100 1 −== (3.4)

ϑχ−=χ−= 222 sinsinsin 2
33

2
22 ag,ag

(index 1 corresponds to the variable  χ , index 2 to  ϑ  
and index 3 to ϕ ). Non-zero components of the tensor 

( ) RgR µ νµ ν − 21 , entering the Einstein equation, in the 
form

,
a

aRR
2

2

00
13

2
1 +=− (3.5)

.
a

aaagRgR ikikik 2

221
2
1  ++−=−

Let  us  turn  now  to  calculation  of  the  energy-
momentum tensor. According to the formulae (1.11) its 
non-zero components are equal to

∫ ∫
∞




 −−=
0

0
3

00 ,uugafuuddmmgT ki
ik

∫ ∫
∞






 −−=

0 0

3
3
1 .uugaf

u
uu

uddmmggT ki
ik

i
i

ikik

Going over from the variables ,u1  ,u2  3u  to ,x  ,y  z

322212 uaz,uay,uax ϑχ=χ== sinsinsin

and taking into account that

3
3

a
dxdydzudg =−

we obtain

×








 +++= ∫ ∫
∞ ∞+

∞−

21

0
2

222

300 11
/

a
zyxdxdydzdmm

a
T

,zyxf 


 ++ 222

∫ ∫
∞ + ∞

∞−
×++=

0
2

222

33
1

a
zyxdxdydzdmmg

a
T ikik





 ++









 +++ 222
2

222
1 zyxf

a
zyx

or introducing the notation 2222 rzyx =++

( ) ,rf
a
rdrrdmm

a
T

/ 21

0 0
2

2
2

300 14
∫ ∫
∞ ∞











+π= (3.6)

( ).rf
a
rdrrdmmg

a
T

/

ikik

21

0 0
2

2
4

5
1

3
4

−∞ ∞
∫ ∫ 










+π−=

In a similar way one can find formulae for the mass 
flux density. Using (1.11) and (2.8) we have

( ) .J,rfdrrdmm
a

J k 04

0 0

2
3

0 =π= ∫ ∫
∞ ∞

(3.7)

To derive the formulae (3.6), (3.7) we used the solution 
of  the  kinetic  equation  (2.8)  in  the  case  of  the 
homogeneous  and  isotropic  metric,  found  in  the 
previous Section. It should be stressed that this solution, 
as well as the formulae (3.6) and (3.7), hold for all three 
cosmological models.

One can easily see that Eqs. (3.6), (3.7) yield in the 
limit of ∞→a

∞→→ a,JT 000 (3.8)

and in the limit of 0→a

,Tp 00
3
1→ (3.9)

where the pressure p  is given by .pgT ikik −=

In  the  case  of  the  closed  cosmological  model  the 
Universe mass is determined by (see (2.4))

ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2000, №2.
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∫ π=−= .JaJgxdM 03203 2 (3.10)

We want to note that the quantities ,T00  ,gT ik
ik  as 

it must be in the case of the space-homogeneous metric, 
do  not  depend  on  kx  and  in  virtue  of  the  metric 
isotropy the quantity ikT  is proportional to .g ik

Thus, the Einstein equation for the time component 
is of the form [1,2]

( ) ,apa =+ 12 (3.11)

( ) ( ).rf
a
rdrrdmm

a
Gap ∫ ∫

∞ ∞
+π=

0 0
2

2
2

2
11

3
32 (3.12)

For the open model the analogous equation is

( ) ,apa =− 12 (3.13)

and for the Euclidean model it takes the form

( ) ,apa =2 (3.14)

where  the  function  ( )ap  is  governed,  as  before,  by 
(3.12). Formulae (3.11), (3.13), (3.14) along with (3.12) 
describe a space-time structure of the Universe for the 
three  Friedman  cosmological  models  and  in  certain 
limiting cases (we do not dwell on these cases) lead to 
well-known results.

3.2.  Relic  Distributions  of  Particles.  The  kinetic 
equation  (1.17)  can  be  used  in  order  to  describe  the 
evolution of the stars distribution function as well as the 
distribution  functions  of  elementary  particles  such  as 
photons, neutrino, electrons and others, which originated 
after the Big Bang. Notice that one can use the kinetic 
equation after a certain lapse of time, when as a result of 
the  Universe  expansion  we can  neglect  the  collisions 
between particles.

Recalling reasoning given in Sections 1.1 and 1.2 we 
come to the kinetic equation for massless particles

,f
k

kk
x

k 0=






∂

∂Γ−
∂

∂
µ

ρνµ
ν ρµ

µ (3.15)

which is  analogous  to  the  kinetic  equation  (1.17)  for 
particles  possessing  mass  ( µk  is  the  wave  vector  of 
photon);  the  difference  between  them  is  that  the 
relativistically  invariant  distribution  function  f , 
determined by the formula

( ) ( ) ( ) ( )k,xfkkkk,xf µ
µδϑ= 02 (3.16)

is other than zero not at the mass surface  2mpp =µ
µ  

but  only  when  0=µ
µ kk .  The  kinetic  equation  for 

( )k,xf , obviously, takes the form

,f
k

kk
x

k
t

k k
k

l
l 00 =






∂
∂Γ−

∂
∂+

∂
∂ ρν

ν ρ (3.17)

ki
ik kkgk −=≡ω 0

(as  previously  we  use  the  synchronous  reference 
system). The general isotropic solution of this equation 
is

( ) ( )( ).taf,xf ω=k (3.18)

The expressions for  the  energy-momentum tensor  and 
flux density vector for massless particles have the form

( ) ( ) ,k,xfkkkdgxT ∫ νµµ ν −= 4 (3.19)

( ) ( )∫ µµ −= .k,xfkkdgxJ 4

As it is mentioned above the distribution function of 
photons in the moment when radiation separates from 
matter is determined by the formula

( )
( ) ( ) .

tT
k,tf

1

0

0

30 1
2

1
−













−










π
= expk

This  function  is  normalized  so  that  the  quantity 
( )∫ k,tfkd 0

3  represents  the  density  of  photons. 
Bearing  in  mind  (3.18)  we  obtain  the  distribution 
function at the moment 0tt >  in the form

( )
( ) ( ) ,

tT
,tf

1

3
1

2

1
−









−




 ω

π
= expk (3.20)

where

( ) ( ) ( )
( ) .
ta

ta
tTtT 0
0=

We see that when the distribution function evolution 
takes place the form of  distribution remains unaltered 
while  the  temperature,  which  occurs  to  be  inversely 
proportional to the curvature radius, is altered.
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