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The work deals with the phenomenon of Stochastic Resonance in its genuine model, proposed by B. McNamara 
and K. Wiesenfeld for explanation of long-term climatic changes on Earth. It is shown that in two state model the 
higher harmonics behave in a non-monotonous way with increase of the noise level, possessing one or more maxima. 
Explicit formulae for third and fifth harmonic amplitudes and corresponding SNR are obtained. Studied by other au-
thors peculiarities, like dips and sharp peaks in output signal do not occur in two state model, thus they only exist in  
systems with continuous configuration space.
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1. INTRODUCTION
Stochastic resonance (SR) has been studied for about 

20  years.  The  principal  manifestation  of  the  phe-
nomenon is a strong reaction of different output charac-
teristics of the system (like component with initial fre-
quency in  residual-time distribution,  signal/noise  ratio 
etc.) to a weak periodic signal. This reaction grows with 
increasing of the noise level  up to certain extent.  The 
motivations for study of the phenomenon as well as the-
oretical  model  are  rather  naturally presented  in  [1,2], 
early works describing SR (initially put forward for ex-
planation of the correlation between glacial periods on 
Earth with the periodic changing of the Earth orbit ec-
centricity). Now SR constitutes an important subfield of 
non-linear physics. According to usual understanding of 
stochastic  resonance  phenomenon  as  non-monotonous 
dependence of the output as a function of noise intensi-
ty, the majority of investigations (both theoretical  and 
experimental) in the case of monochromatic input ana-
lyze the component of output with initial frequency.

There are several works where higher harmonics are 
investigated as well as the first one — using different 
models  in  continuous  configuration  space  (most  com-
mon approaches  are  linear-response  theory,  numerical 
integration of Fokker-Planck equation, matrix continued 
fraction technique) they study the problems of optimal 
generation or suppressing of higher harmonics [3,4,5]; 
the strengths of higher harmonics show various peculi-
arities such as extremely sharp peaks and resonance-ab-
sorption like dips  at  certain noise  intensities.  The  de-
pendence of non-zero intensity of even harmonics on the 
potential asymmetry is studied in [6]. Different methods 
used for study of SR-like phenomena and further numer-
ous references can be found in [7].

We will demonstrate some qualitative aspects of the 
problem in two state model, intending to find out what 
of studied features of higher harmonics can be observed 
in it. We follow the notation from the work [1]; we will 
propose some useful representations of higher harmon-

ics intensities — absolute and in relation to noise power 
densities at corresponding frequencies. 

Let us consider  a Brownian particle in an external 
smooth  potential  )(xU  with  a  barrier  between  two 
wells, subjected to a strong friction. If the noise intensity 
D  (we  consider  a  white  noise  that  provides  a  term 

2 ( )D tξ  in the Langevin equation (3);  =′)()( tt ξξ  
)( tt ′−δ ) is much smaller than the height of the barrier 

between  wells  U∆ ,  the  average  reciprocal  transition 
time through the barrier is given by Kramers formula: 
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0 and mx  are positions of potential maximum and mini-
mum.

We  consider  a  symmetric  potential  (with  dimen-
sionless x )
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Let us assume that beyond the chaotic force 2D tξ ( ) , 
a friction and  − ∂ ∂U x/  the particle is subjected to an 
external periodic force  A tcosω . For overdamped sys-
tem the dependence x t( )  is to be found from

 cos ( )x x x A t D t= − + +3 2ω ξ . (3)

Under  these  conditions  ( )x t  is  a  periodic  function 
having period  2 /T π ω=  (providing 0 1/t t r− ? ); the 
point is to study the behavior of its different harmonics 
as functions of D .

We mainly study the power spectrum, being obtained 
as  a  Fourier  transform  of  autocorrelation  function 

( ) ( )x t x t τ+ .  ( )kSNR D ,  defined as a ratio  of signal 
power in  -spike at  kωΩ =  to noise power density at 
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this  frequency  is  also  investigated;  non-monotonous 
1( )SNR D dependence is a usual manifestation of SR.

Two state model, in which there are only two states 
for the system to occupy ( mx x= ± ), may be considered 
a limit of described above dynamical system in which 
the transition time is  much greater  than the relaxation 
time within a  well.  It  is  natural  to  assume minima of 

( )U x  as mx± ; for the potential (1) 1mx = .
In such an approximation the distribution ( , )p x t  re-

duces to  ( )n t±  — probabilities of location near  mx±  
(within right or left well)  ( )1n n+ −+ = :

( , ) ( ) ( ) ( ) ( )m mp x t n t x x n t x xδ δ+ −= − + + . (4)
Their evolution is given by the rate equation:

( ) ( )
dn n W t n W t
dt

±
± ±= − +m m , (5)

where ( )W t±  are normalized probabilities of transition 
into  state.

In the work [1] the following expression was pro-
posed:

( ) exp cosmAx
W t r t

D
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и ш
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with , , r A D  introduced above.
The solution of (5) (for sign +)
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The integrals in (8) cannot be calculated in terms of 

known functions.  In  [1]  integrals  were evaluated  with 
accuracy  /mAx Dε =: ,  considered to  be  a  small  pa-
rameter. As a result  ( )n t+  only contained the first har-
monic that was ~ ε  (comparing with the constant com-
ponent of distribution at t = t0+1/r).

Using more precise expansion in small ε  it is possi-
ble  to  account  for  higher  harmonics  and  to  calculate 
their  amplitudes  with  desired  accuracy.  However,  the 
problem is rather complicated especially if the aim is to 
obtain kSNR  – because in such a way it is inevitable to 
take into account terms with different frequencies (not 
only kω ). In the work [8] the authors obtained results 
for higher harmonics in similar model considering hop-
ping between the wells as process discrete in time (i.e. 
not only configuration space, but also the time scale was 
treated  as  discrete).  They also  studied  interesting fea-
tures  connected  with modulation  of  equilibrium posi-
tions ( )mx t ; this resulted in (rather weak) peaks at even 
harmonics in power density.

We will obtain sum representation of amplitudes in 
power spectrum; these sums:

1) have sense at all ε

2) can  be  used  for  evaluating  the  largest  terms 
(those are 2~  for k

kSNRε ) at small ε .

2. POWER SPECTRUM

Using  exp( cos ) I ( ) cosn
n
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are modified Bessel functions we can obtain
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So, using (8)
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The amplitudes of different harmonics in output power 
are connected with the coefficients kG  in

0
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The periodicity of  ( )H t is obvious; the autocorrel-
tion function 0 0( ) ( ) ( , | . )x t x t K t x tτ τ+ =

0 0( ) ( ) ,x t x t x tτ+

0 0( , | , ) ( , | , )xy dx dy p x t y t p y t x tτ= +тт (14)

is periodic as a function of  t in the limit 0t → − Ґ . On 
averaging over  random initial  phase  in  external  force 
(or, equivalently, over the period of t, taking 0t t−  and 
τ  constant)

0
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The first term (see (13)) gives (after averaging)
2 2
0

1

1( ) ( ) cos
2 kt

k
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=
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Fourier  transform  of  (16)  only  contains  δ-spikes  at 
kωΩ = :
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Using the same procedure one can see that the 2nd term in 
(15) corresponds to noise component of output power since 

( )0 02 22( ) 1 ( ) ( )
( )
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t

te H t e U tτ τπ τ
π τ
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with  ( / ) ( )U t U tπ ω+ = . Fourier transform ( )NK Ω  of 
(18) (i.e. the second term in (15)) is a regular function 
with Gaussian maxima near  2 (n n N −w=W О positive 
integers). So, the useful signal is given by (17); in part, 
if  some  0kG =  the  power  spectrum  is  regular  at 

kw=W  (because of the symmetry of the potential all 
even harmonics vanish: 2 0lG l N= " О ). According to 
the definition 

2
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k
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3. HARMONICS AMPLITUDES EVALUA-
TION

Let us represent V(t) (see(11)) as a sum: 
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Here 
kn
е means a sum over all 1{ }k kn ZҐ Ґ

= О  – conse-

quences of integers (with finite number of non-zero ele-
ments). Let us obtain representation of ( )H t  as a Fouri-
er sum: 
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In the last  equation we have introduced  , nZs s =О  

12 ( )k kk k n lҐ
=+ +е ,  thus  n is  to  be  calculated  from 
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Hs  are simply connected with :kG
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For 1e=  (21) enables us to obtain approximations for 
Hs : below
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It is obvious that the terms containing the lowest power 
of  e  correspond to those with equal-signed  , kn n  and 

kl . There is a finite number of such terms. Using only 
them we get for 0s >
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The calculations give for first non-zero amplitudes kG :
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Using the terms with the lowest power of e  in NK  one 
can obtain from (19)  expressions for  kSNR applicable 
for small e :
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The dependence ( )kSNR w  has non-monotonous charac-
ter. Unless A or e  is large kSNR  attains its maximum at 

1e<  where our approximation is valid. So, maximum 
positions can be calculated from the above expressions. 
From expansion of  I ( )n e  one can derive the following 
structure of the main term of SNR:

( )2 2/ 2 ( )k
k kSNR z Q zw e= ,

where kQ  is some rational function, 2 (0) 0kQ № . There-
fore, for small  z (i.e. large  w  or low noise, though the 
last  alternative  is  restricted  by  the  requirement 

/ 1mAx D e<є ) one can evaluate the position of prin-
cipal maximum of kSNR :
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Corresponding graphics of kSNR are depicted in Fig. 1–3. 
Maxima  in  Fig. 1  are  located  at  predicted  values. 
Figs. 2,3 show deviation from description based on ne-
glecting of intricate  z-containing factor behavior – they 
correspond to low w , when maxima are situated in the 
region of D, where 1e> . Fig. 3 shows anomalous rela-
tive heights and position of multiple maxima of the first 
three non-zero harmonics.
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  D  

Fig. 1. 1,3,5 0.1SNR ω = –  regular  situation.  Crosses 
correspond to 1SNR , the light curve to 3SNR , and the 
dark one to 5SNR
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Fig. 2. 3 0.018SNR ω = –  low  frequency,  2  maxima 
with equal heights
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Fig. 3. 1,3,5 0.003SNR ω =

The main difference from corresponding characteris-
tics of the first harmonic is due to more complicated role 
of z in the last expressions. This makes possible multiple 
maxima, which are really observed at such  w  that the 
"resonant"  D corresponds to  1z »  (or  r w» ). In this 
case the behavior of ( )z D  is necessary to be accounted 
for. Due to the different locations of maxima of different 
factors containing z in kG  and kSNR  one can find spe-
cial values of w  that provide several maxima of compa-
rable  heights  for  these  functions,  though  universally 
these functions possess only one maximum in the region 
of lower and higher frequencies. 

For 1e>  one should use greater number of terms in 
(21).  The  number  of  required  terms increases  rapidly 
when e  becomes greater than 1. So, in order to find out 
whether there exist other peculiarities in output charac-
teristic for considered system, it is more convenient to 
use  numerical  calculation  of  different  harmonics  of 

( )H t . Such numerical integration shows that the correc-
tions to (24) in the vicinities of maxima are not signifi-
cant.  These  precise  results  do  not  change  the  non-
monotonous  character  of  both  curves  Gk ( )ε  and 
SNRk ( )ε  (or, equivalently G Dk ( )  and SNR Dk ( ) ). The 
only difference I would like to mention is less rapid van-
ishing of both functions at  e® Ґ  ( )0DЫ ® – these 
vanish exponentially according to (24,26) and less rapidly 
following the numerical results.
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