FORMALISM FOR CHAOTIC BEHAVIOR OF THE BUNCHED BEAM

Z. Parsa

Brookhaven National Laboratory, Physics Department 510 A, Upton, NY 11973
e-mail: Parsa@bnl.gov

V. Zadorozhny
Institute of Cybernetic, National Academy of Sciences of Ukraine
e-mail: Zvf@umex.istrada.net.ua

Using Cesaro mid of Fourier series the quasi-linear Vlasov's equation is transformed to the integral Fredholm equation. New results on the oscillatory behavior of solution are obtained. An extension to perturbing equation is also included.

PACS: AMS 94B, 81P99, 57M20

1. INTRODUCTION

The self-consistent Vlasov equation is one of the most frequently used equations for the time dependent description of many-particle systems. Especially in nuclear physics this equation has been employed to describe multifragmentation phenomena and collective oscillations. It is apparently not widely known that there exists an analytical solvable model from which the effects of self-consistency can be studied. Here such a model is presented which shows that self-consistency can lead to self-focused and acceleration of bunched beam.

The kinetic equation for the beam distribution function f has the form

$$
\begin{equation*}
\frac{\partial f}{\partial t}+v \partial_{r} f+F_{l} \partial_{v} f=0, \tag{1}
\end{equation*}
$$

where $r=\left(x_{1}, x_{2}, x_{3}\right)$ is a three-dimensional vector, $x_{i}, i=1,2,3$ are Cartesian coordinates; $v=\left(v_{1}, v_{2}, v_{3}\right)$ is their velocity. In this solution the Lorentz force $F_{l}=q\left(E+\frac{1}{c}[v \times H]\right)$ acting on a nonrelativistic driving beam. Here q is the particle charge and E is the electric field: $E=E_{1}+E_{2}$ where E_{1} is given field and E_{2} is generated by a charged bunch, H is the magnetic field and $H=H_{1}+H_{2}$ too. The fields should satisfy the Maxwell system

$$
\begin{aligned}
& \langle\dot{v}\rangle=\frac{\int_{(\infty)} \dot{v} f(r, v, \dot{v}, t) d \dot{v}}{f(r, v, t)}=\frac{e}{m}(E+ \\
& \left.+\frac{1}{c}[v H]\right), \operatorname{rot} H-\frac{1}{c} \frac{\partial E}{\partial t}=\frac{4 \pi}{c} q \int_{(\infty)} v f d v, \\
& \operatorname{div} E=4 \pi q \int_{(\infty)} f d v \\
& \left(\operatorname{rot} E+\frac{1}{c} \frac{\partial H}{\partial t}=0, \operatorname{div} H=0\right),
\end{aligned}
$$

where $\rho(t, r)=q \int f(t, r, v) d v$,
$j(t, r)=q \int v f(t, r, v) d v$ are a charge and a current of the beam, c is the speed of light.

If we formally let $c=\infty, H=0$ and replace $q E$ by E and ρ / q by ρ, we get the Vlasov-Poisson system:

$$
\begin{align*}
& \partial_{t} f+v \partial_{x} f+E(t, r) \partial_{v} f=0 \tag{3}\\
& \Delta U(t, r)=-4 \pi \rho(t, r) \tag{4}\\
& \rho=\int f(t, r, v) d v .
\end{align*}
$$

This system was considered by A.A. Vlasov in his treatise on many-particle theory and plasma physics [1]. To determine the focusing and accelerating fields we use the following auxiliary postulate.

The postulate of the existence electric and magnetic fields realizing any motion of the bunch beam: it is shown [2] that for any field of the velocity of charged particle exist electric \& magnetic fields that yields same velocity field satisfying Maxwell's equations. This postulate makes it feasible to construct the optimal fields using the optimal control theory [3].

2. APPROXIMATE SOLUTION OF VLASOV'S EQUATION

Letting $f(t, r, v)=f_{0}(r, v) c^{-i \omega t}$ into (1) yields

$$
\begin{equation*}
L f_{0} \equiv v \partial_{r} f_{0}+F_{l} \partial_{v} f_{0}=i \omega f_{0} . \tag{5}
\end{equation*}
$$

Suppose the solution Eq. (5) can be represented in the form

$$
\begin{equation*}
f_{0}=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} \tag{6}
\end{equation*}
$$

where the vector $k=\left(k_{1}, k_{2}, \ldots, k_{6}\right), k_{i}$ is an integer, $i=1,2, \ldots, 6$; the vector $x=r+v$, i.e. it's sum of the vector of position and vector of velocity of the particle orbit, $k x=\sum_{1}^{6} k_{i} x_{i}$,
$x_{i}=r_{i}, i=1,2,3 ; \quad x_{i}=v_{i}, i=4,5,6$.

Let us assume that the the vector r falls into a domain Δ_{1}, the vector $r \in \Delta_{2}$, and
$\Delta=\Delta_{1} \times \Delta_{2}=\Delta_{11} \times \Delta_{12} \times \Delta_{13} \times \Delta_{21} \times \Delta_{22} \times \Delta_{23}$,
where $\Delta_{i j}$ is some line segment, a sign x is the right multiplication sign. By c_{k} we denote Fourier's coefficients

$$
c_{k} \equiv c_{k}\left(f_{0}\right)=\frac{1}{(2 \pi)^{6}} \int_{\Delta} f_{0}(x) e^{-i k x} d x
$$

Thus the formula (6) is a expansion of the function f_{0} in the Fourier series.

Summing Eq. (6) by the method of Cesaro for any $N \in[1,2, \ldots, \infty)$ we get

$$
\begin{equation*}
\sigma_{N} f_{0}(x)=\frac{1}{\pi^{6}} \int_{\Delta} \Phi_{N}(x-y) f_{0}(y) d y \tag{7}
\end{equation*}
$$

here $\Phi_{N}(u)$ is the Cesaro's kernel

$$
\begin{aligned}
& \Phi_{N}(u)=\prod_{j=1}^{N} F_{N}\left(u_{j}\right) \\
& F_{N}\left(u_{j}\right)=\frac{1}{2(N+1)}\left(\frac{\sin \frac{N+1}{2} u}{\sin \frac{u}{2}}\right)^{2}
\end{aligned}
$$

It is easy to see

$$
\int_{\Delta} \Phi_{N}(u) d y=1
$$

and

$$
\lim _{N \rightarrow \infty}\left\|\sigma_{N} f_{0}-f_{0}\right\|_{c(\Delta)} \rightarrow 0
$$

where $\|\cdot\|$ is a norm in the space of continuous functions on $\Delta: c(\Delta)$.

Let us write down the function f_{0} as follows $f_{0}=\sigma_{n} f_{0}+g$, where $\int_{\Delta} \sigma_{N} f_{0} \cdot g d x=0$ and for $N \rightarrow \infty$ is vanishing.

Now differentiating formula (6) by the Eq. (5), we obtain the following equation

$$
\begin{equation*}
\lambda \sigma_{N} f_{0}-g_{0}=\frac{1}{\pi^{6}} \int_{\Delta} \widetilde{\Phi}_{N}(x-y) f_{0}(y) d y \tag{8}
\end{equation*}
$$

where $g_{0}=-\lambda g, \widetilde{\Phi}=L \Phi x, y \in \Delta$
This reasoning yields Fredholm equation for the function $\sigma_{N} f_{0}$ if g_{0} is a given function then:

$$
\begin{equation*}
\lambda \sigma_{N} f_{0}-g_{0}=\frac{1}{\pi^{6}} \int_{\Delta} \widetilde{\Phi}(x-y) \sigma_{N} f_{0}(y) d y \tag{9}
\end{equation*}
$$

Define a matrix $k=\left[k_{q r}\right]_{1}^{N}$, as follows

$$
k_{q r}=\frac{1}{\pi^{6}} \int_{\Delta} \tilde{\Phi}(x-y) e^{i q x} e^{-i r y} d x d y
$$

It is easy to see that the matrix K is the Toeplitz matrix which generates a vector-function $X=\left\{v, F_{l}\right\}$ [4].

The Eq. (9) is transformed to the linear algebraic equation as follows:

$$
\begin{equation*}
\lambda^{-1} c_{q}=\sum_{r=1}^{N} k_{q r} c_{r}, q=1, \ldots, N \tag{10}
\end{equation*}
$$

on set $\Psi=\left\{e^{i k x}\right\}_{1}^{N}$, here $k_{i} \in[1, \ldots, N]$.
The Eq. (9) is an integral equation with degenerated kernel [5].

Corollary 1. We can always find a sufficiently large N such that there exists $\varepsilon>0$, such that the following relations are true:

$$
\begin{aligned}
& \left|f(t, r, v)-\sigma_{N} f_{0} e^{-i \omega t}\right|<\varepsilon \\
& \lim _{N \rightarrow \infty}\left|f(t, r, v)-\sigma_{N} f_{0} e^{i \omega t}\right| \rightarrow 0
\end{aligned}
$$

where f is continuous at every point (r, v) of the domain Δ. The function $\sigma_{N} f_{0}$ is a solution of Eq. (9), and the 0 is the eigenvalue of the matrix K, thus it is frequency of a wave motion of the bunched beams.

The number 0 , generally, maybe any complex number: $0=\alpha+i \beta$.

It can be shown in the usual way that if $\operatorname{Im} \omega>0$ then $|f(t, r, v)| \rightarrow 0$ for $t \rightarrow \infty$, if $\operatorname{Im} \theta<0$ then the solution f goes out from the domain Δ. Finally, may be the case such that $0=0$. These results are discussed in more details in the next section. Under this condition we have a stationary solution of Eq. (1).

Definition. The solution $f^{0}=0$ of Eq. (1) is said to be an asymptotically stable if for any $t_{0} \geq 0$ and arbitrary $\varepsilon \geq 0$ it is possible to find such $\delta>0$ that implies $\quad \rho\left(f_{00}, f^{0}\right) \leq \delta \rightarrow \rho(f(t, r, v), 0) \leq \varepsilon \quad$ and $\rho(f(t, r, v), 0) \rightarrow 0$ as t tends ∞. Here $\rho(f, 0)=\max _{x \in \Delta}\|f\|,\|f\|^{2}=\int_{\Delta}|f|^{2} d x$,
$f_{00}=f\left(t_{0}, r_{0}, v_{0}\right)$.

3. CHAOTIC BEHAVIOR OF THE BUNCHED BEAM

The motion of particles of bunched beam is evolving in the space

$$
\Omega_{r} \times \Omega_{v}, \Omega_{r}=\{r:|r| \leq \infty\}, \Omega_{v}=\{v:|v| \leq \infty\} .
$$

It is well known that the variables r, v are governed by the following equation

$$
\begin{align*}
& \quad \dot{r}=v, \\
& \qquad \dot{v}=\frac{e}{m}\left(E+\frac{1}{c}[v H]\right) . \tag{11}\\
& \text { Here } \Omega_{r} \times \Omega_{v} \subset R^{6} .
\end{align*}
$$

Thus

$$
\sum_{1}^{3} \frac{\partial v_{s}}{\partial x_{s}}=\sum_{1}^{3} \frac{\partial[v H] k}{\partial v_{k}} \equiv 0
$$

for this reason (well known Liouville theorem) the measure $\partial \mu=d r \times d v$ is the invariant measure for a group T_{t} (11), i.e. $T_{t} \mu_{0}=\mu_{t}$ for all $t \in[-\infty, \infty]$, that is easy to see. Consider an invariant measure on $\Omega_{r} \cdot \Omega_{v}$, simplify to solve linear partial differential (4) by eigenvalue method, because we now have the eigenvalue problem with electro-magnetic dependent coefficients and the zero eigenvalue. We claim that the eigenvalues will be points of the continuous spectrum and eigenvector of (5) will be chaotic in the phase space in the present case. It is interesting to know if it is the case and how should one solve this kind of eigenvalue problem when the system (11) is chaotic.

Let us consider the following operator L that is selfadjoint extensions of the operator L_{0} in Hilbert space $L^{2}(\Omega)$. In accordance with the Stone theorem, the operator $L=L^{*}$ generates a group of transformation $U_{t}=e^{i t L}$, such that

$$
i L=\lim _{t \rightarrow 0} \frac{U_{t} \varphi-\varphi}{t}
$$

Let $e_{k}(\lambda)$ be an eigenfunction of the group U_{t} then
$U_{t} e_{k}(\lambda)=e^{i \lambda t} e_{k}(\lambda)$,
$k=1, \ldots, \operatorname{dim} L_{\lambda}$, where L_{λ} is a multiple of the point $\lambda \in \sigma(L)$ and σ is the spectrum of the L.

The element $e_{k}(\lambda)$ belongs to the space $H_{-1}\left(\Omega_{v}\right)=H_{1}\left(\Omega_{v}\right)^{*}$ ([8] p. 387).

It is a direct consequence of the existence of the invariant measure in dynamical system (11).

It is well known that $e_{k}(\lambda) \in H_{-1}\left(\Omega_{v}\right)$ and $e_{k}(\lambda) \notin C\left(\Omega_{v}\right)$ if it is the point of the continuous spectrum.

In this case the first integral will be absent for dynamical system (5) and it has become the transitive system. In particular this reasoning yields the first integral destruction. A. Einstein, [7] has given conditions under which the first integral disappears.

Corollary 2. The electro-magnetic field in (11) can generate the ergodic or chaotic motion. Suppose that ergodic is equivalent to the chaos. This reasoning yields an approach of the problem of deterministic chaos.

We return back to the Eq. (1) and assume that there is the stationary solution $f_{0}\left(g_{0}, r, v\right)$ for which:
1° There exists a function $V\left(g_{0}, r, v\right)$ such that
$V=0$ on the solution $f_{0}\left(g_{0}, r, v\right)$, where $f_{0}=s_{0}$ at
$r=r_{0}, v=v_{0}$,
2° The function V is positive defined and founded on an arbitrary solution $f(s, t, r, v)$ of Eq. (1), here s is an arbitrary function such that

$$
s=f\left(t_{0}, r_{0}, v_{0}\right),\left\|f\left(t_{0}, r_{0}, v_{0}\right)-f_{0}\right\|_{c} \leq \delta
$$

3° The derivative \dot{V} of which in view of Eq. (1) is negative.

We are going to show that in this case the solution f_{0} of Eq. (1) is orbital asymptotically stable.

In fact, for the function $V(t, r, v)$ mentioned above we have an estimate

$$
\begin{aligned}
& V\left(t_{2}, r, v\right) \leq V\left(t_{1}, r, v\right), t \\
& \text { if } t_{2}<t_{1} \text { and } \lim _{t \rightarrow \infty} V=0
\end{aligned}
$$

Thus the function V is decreasing and \dot{V} is representing its total time derivative, taken under the assumption that r, v are function of t, satisfying differential Eq. (5).

Note that a perturb have initial value, i.e. a perturbation motion appears due to perturb of the function S only. Now introduce into consideration a function

$$
V(t, r)=\int_{\Delta} \eta(r) f(t, r, v) d t
$$

and will show the one fulfils the conditions $1^{\circ}-3^{\circ}$. A function η is an arbitrary symmetric function such that $\int_{\Delta} \eta(r) f_{0}(r, v) d v=0$.
Its derivative has the form

$$
\begin{aligned}
& \dot{V}=\frac{\partial}{\partial t} \int_{\Delta} \eta(r) f_{0} d v+d i v_{r} \int_{\Delta} \eta(r) f_{0} d v+ \\
& +d i v_{v} \int_{\Delta} \eta(r) f_{0} d v=0
\end{aligned}
$$

Indeed, in the case under consideration we get

$$
\begin{align*}
& \frac{\partial}{\partial t} \int \eta f d v=0 \\
& d i v_{r} \int \eta f_{0} d v+d i v_{v} \int \eta f_{0} d v= \\
& \int\left[v \frac{\partial \eta}{\partial r} f_{0}+\eta\left(v \frac{\partial f_{0}}{\partial r}+\frac{\partial f_{0}}{\partial v} F_{l}\right)\right] d v \tag{12}
\end{align*}
$$

while

$$
\int \frac{\partial \eta}{\partial r} v f_{0} d v=0, v \frac{\partial f_{0}}{\partial r}+\frac{\partial f_{0}}{\partial v} F_{l}=0
$$

The first integral equal to zero under the following condition

$$
\left.f_{0}\right|_{v \rightarrow \infty}
$$

i.e. the function f is a quickly decreasing with the increasing velocity v.

Corollary 3. The function \dot{V} be no positive if
$R_{e}(0<0$. It is easy to verify (see above) that
$\int \frac{\partial \eta}{\partial r} v f d v=0$.
By using this reasoning Eq. (12) yields
$\dot{V}=\int_{\Delta^{*}} \eta L f(s, t, r, v) d v=\int_{\Delta^{*}} \eta \cdot i \omega f d v$
or $R_{e} V \geq 0$ and $R_{e} \dot{V} \leq 0$.
Thus the particles beams under the above condition be orbital asymptotically stable for solution f_{0}.

Speaking about the condition of the asymptotically stable, we mean that the postulate in respect to the field (E, H) holds.

Thus this consideration proves that in domain $\Delta^{*} \subset \Delta$ there is (E, H) such that the solution f_{0} Eq. (5) is the orbital asymptotically stable. Note that if the velocity $v\left(v_{1}, v_{2}, v_{3}\right)$ is such that the following condition $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=$ const holds, then we have case focusing and acceleration of bunched beam around f_{0}. It is easy to see that we can choose any unperturbed motion such that one is a motion of bunched beam along arbitrary axis of rotation. This can do always, because always, there exist electric and (or) magnetic fields satisfying the Maxwell equation for a given arbitrary motion, i.e. any (or) magnetic fields which satisfy the Maxwell Eq. (2).

It follows that we can choose optimal fields.

4. CONSTRUCTION OF AN OPTIMAL ELECTRIC FIELD

We can assume without loss of generality that the matrix K is given in the following form

$$
\sum k_{i i}=-1, k_{i i}=-\alpha_{i},
$$

where α_{i} is given number, the vector r is onedimension vector $r \equiv x$, the velocity $v=\dot{x}$ and $-1 \leq v \leq 1$, i.e. it is normalized on c (the speed of light). Then $\Delta=\Delta_{1} \times \Delta_{2}, \Delta_{1}=\{x:|x| \leq \pi\}$,

$$
\begin{gathered}
\Delta_{2}=\{v:|v| \leq 1\},\left\{\varphi_{n}(x)=\frac{1}{\sqrt{2 \eta}} e^{i n x}\right\}_{n=+\infty}^{+\infty}, \\
\left\{P_{n}(v)=\sqrt{\frac{2 n+1}{2}} \hat{P}_{n}(v)\right\}_{n=0,1, \ldots}
\end{gathered}
$$

\hat{P}_{n} are the polynomials of Legendre.
Next we show how to choose the electrostatic field E for the Vlasov-Poisson system

$$
\begin{align*}
& \partial_{t} f+v \partial_{x} f+E(t, x) \partial_{v} f=0 \tag{13}\\
& \Delta U(t, x)=-4 \pi \rho(t, x)
\end{align*}
$$

where $E(t, x)=-\partial_{x} U(t, x)$,
$\rho(t, x)=\int_{\Delta} f(t, x, v) d v$, and E is such that the beam of particle focused and accelerated along axis x. For this purpose the distribution function $f(t, x, v)$ of the particles in phase space Δ will be sought in the form
$f=f_{0}(x, v) e^{-i \omega t}$. The substitution of $f_{0} e^{i \omega t}$ for f yields $v \partial_{x} f_{0}+E \partial_{v} f_{0}=i \omega f_{0}$.

Next, we construct the function $\sigma_{N} f_{0}$. Thus we arrive at the following matrix $K=\left[k_{q r}\right]_{1}^{N}$, $k_{q r}=\int_{\Delta_{1}} e^{i(q-r) x} E(x) d x \sum_{-N}^{N} \int_{\Delta_{2}} P_{n} \frac{\partial P_{m}}{\partial v} d v, \quad$ but $\sum_{-N}^{N} \int_{\Delta_{2}} \frac{\partial P_{m}}{\partial v} d v=\int_{-1-N}^{1} \sum_{-N}^{N} \partial\left(P_{n} P_{m}\right)=\left.\sum_{-N}^{N} P_{n} P_{m}\right|_{-1} ^{1}=C_{0}$ here $P_{n}(1)=1, \quad P_{n}(-1)=(-1)^{n},|n|=1, . ., N$.

Let the matrix K be given then the problem arises of finding the field E under which the formulas $\left[k_{q r}=C_{0} \int_{-\pi}^{\pi} e^{i(q-r) x} E(x) d x\right]_{1}^{N}$ are fulfilled. Note that in this situation the $N \times N$ number $k_{q r}$ are given and $N \times N$ function $e^{i(q-r) x}$ are given too, it is necessary to find the function $E(t, x)$.

Let exist some number $L>0$ that $|E(t, x)| \leq L$.
Thus we obtain the well known L - problem of moments [3].

Now from Eq. (4) we can find ρ and U.

REFERENCES

1. A.A. Vlasov. Many-Particle Theory and its Application to Plasma Physics. New York, 1961, 355 p.
2. V.I. Zubov. Problem of stability for the processes of government. S.- Pet., 2001, 350 p.
3. J. Warga. Optimal control of differential and functional equations. Academic Press, New York and London, 1976, 622 p.
4. U. Grenander, G. Szegö. Toeplitz forms and their applications. University of California press, Berhelcy and Los Angeles, 1958, 305 p.
5. Z. Parsa, V. Zadorozhny. Nonlinear Dynamics on compact and Beam Stability // Nonlinear Analysis. 2001, v. 47, p. 4897-4904.
6. F. Riesz, B. Sz.-Nagy. Leçons d'analyse fonctionnelle. Budapest, 1953, 498 p.
7. A. Einstein. Eine Ableitung des Theorems non Jacobi // Preuss. Akad. Wiss. 1917, pt. 2, 606-608.
8. I. Gelfand, A. Kostjuchenko. On decomposition of differential and other operators onto eigenfunctions // DAN SSSR. 1955, v. 103, Jfe3, p. 349-352.
9. M. Stone. On one-parameter unitary grups in Hilbert space // Ann. Of Math. 1932, v. 33, p. 643-648.
10. Z. Parsa, V. Zadorozhny. Focusing and Acceleration of Bunched Beams. AIP Conf. Proc. 1999, v. 530, p. 249-259.
