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1. INTRODUCTION
The  self-consistent  Vlasov  equation  is  one  of  the 

most frequently used equations for the time dependent 
description  of  many-particle  systems.  Especially  in 
nuclear  physics  this  equation  has  been  employed  to 
describe multifragmentation phenomena and collective 
oscillations. It is apparently not widely known that there 
exists  an  analytical  solvable  model  from  which  the 
effects of self-consistency can be studied. Here such a 
model  is  presented  which  shows that  self-consistency 
can  lead  to  self-focused  and  acceleration  of  bunched 
beam.

The  kinetic  equation  for  the  beam  distribution 
function f has the form
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where  ),,( 321 xxxr =  is a three-dimensional vector, 
3,2,1, =ixi  are  Cartesian  coordinates; 

),,( 321 vvvv =  is their velocity. In this solution the 

Lorentz  force  ])[1( Hv
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nonrelativistic  driving  beam.  Here  q  is  the  particle 
charge and E  is the electric field: 21 EEE +=  where 

1E  is  given field and  2E  is  generated by a charged 

bunch,  H  is  the  magnetic  field  and  21 HHH +=  
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where ,),,(),( dvvrtfqrt ∫=ρ

∫= dvvrtfvqrtj ),,(),(  are a charge and a current 
of the beam, c  is the speed of light.

If we formally let  0, =∞= Hc  and replace  qE  

by  E  and  qρ  by  ρ ,  we get  the  Vlasov-Poisson 
system:

0),( =∂+∂+∂ frtEfvf vxt    (3)

),(4),( rtrtU π ρ−=∆ (4)

∫= dvvrtf ),,(ρ .
This system was considered by A.A. Vlasov in his 

treatise on many-particle theory and plasma physics [1]. 
To  determine  the  focusing and  accelerating  fields  we 
use the following auxiliary postulate.

The postulate of the existence electric and magnetic 
fields  realizing  any  motion  of  the  bunch  beam:  it  is 
shown [2] that for any field of the velocity of charged 
particle exist electric & magnetic fields that yields same 
velocity  field  satisfying  Maxwell’s  equations.  This 
postulate  makes  it  feasible  to  construct  the  optimal 
fields using the optimal control theory [3].

2. APPROXIMATE SOLUTION OF 
VLASOV’S EQUATION

Letting ticvrfvrtf ω−= ),(),,( 0  into (1) yields

0000 fifFfvfL vlr ω=∂+∂≡ .                 (5)
Suppose the solution Eq. (5) can be represented in the 
form

∑
∞
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=
k

ikx
k ecf 0 , (6)

where  the  vector  ),,,( 621 kkkk = ,  ik  is  an 
integer, 6,,2,1 =i ; the vector vrx += , i.e. it’s sum 
of the vector of position and vector of velocity of the 

particle orbit, ∑=
6

1
ii xkkx , 

ii rx = , 3,2,1=i ;  ii vx = , 6,5,4=i .
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Let us assume that the the vector r  falls into a domain 

1∆ , the vector 2∆∈r , and

,23222113121121 ∆×∆×∆×∆×∆×∆=∆×∆=∆
where ij∆  is some line segment, a sign x  is the right 

multiplication  sign.  By  kc  we  denote  Fourier’s 
coefficients

∫
∆

−=≡ dxexffcc ikx
kk )(

)2(
1)( 060 π .

Thus the formula (6) is a expansion of the function 

0f  in the Fourier series.
Summing Eq. (6) by the method of Cesaro for any 

),,2,1[ ∞∈ N  we get

dyyfyxxf NN )()(1)( 060 −Φ= ∫
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σ , (7)

here )(uNΦ  is the Cesaro’s kernel
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It is easy to see
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where  ⋅  is  a  norm  in  the  space  of  continuous 

functions on )(: ∆∆ c .

Let  us  write  down  the  function  0f  as  follows 

gff n += 00 σ ,  where  ∫
∆

=⋅σ 00 dxgfN  and  for 

∞→N  is vanishing.
Now differentiating formula (6) by the Eq. (5), we 

obtain the following equation

dyyfyxgf NN )()(~1
0600 −Φ=− ∫

∆π
λ σ ,  (8)

where gg λ−=0 , ∆∈Φ=Φ yxL ,~

This  reasoning  yields  Fredholm  equation  for  the 
function 0fNσ  if 0g  is a given function then:
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π
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Define a matrix N
qrkk 1][= , as follows
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qr )(~1

6π

It is easy to see that the matrix  K  is the Toeplitz 
matrix which generates a vector-function  { }lFvX ,=  
[4].

The  Eq.  (9)  is  transformed to  the  linear  algebraic 
equation as follows:
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1 ,,1, λ ,  (10)

on set { } Nikxe 1=Ψ , here ],,1[ Nk i ∈ .

The Eq. (9) is an integral equation with degenerated 
kernel [5].

Corollary 1. We can always find a sufficiently large 
N  such  that  there  exists  0>ε ,  such  that  the 
following relations are true:

εσ ω <− − ti
N efvrtf 0),,( ,

0),,(lim 0 →−
∞→

ti
NN

efvrtf ωσ ,

where  f  is  continuous at  every  point  ),( vr  of  the 

domain ∆ . The function 0fNσ  is a solution of Eq. (9),  
and the ω  is the eigenvalue of the matrix K , thus it is  
frequency of a wave motion of the bunched beams.

The  number  ω ,  generally,  maybe  any  complex 
number: βαω i+= .

It can be shown in the usual way that if  0Im >ω  
then 0),,( →vrtf  for ∞→t , if 0Im <ω  then the 

solution f  goes out from the domain ∆ . Finally, may 
be the case such that 0=ω . These results are discussed 
in more details in the next section. Under this condition 
we have a stationary solution of Eq. (1).

Definition. The solution  00 =f  of Eq. (1) is said 

to  be an asymptotically  stable if  for  any  00 ≥t  and 

arbitrary  0≥ε  it is possible to find such  0>δ  that  

implies  ( ) ερδρ ≤→≤ )0),,,((, 0
00 vrtfff  and 

0)0),,,(( →vrtfρ  as  t  tends  ∞ .  Here 
ff

x ∆∈
= max)0,(ρ , ∫

∆

= dxff 22

,

),,( 00000 vrtff = .

3. CHAOTIC BEHAVIOR OF THE 
BUNCHED BEAM

The motion of particles of bunched beam is evolving 
in the space 

{ }∞≤=ΩΩ×Ω rrrr :,ν , { }∞≤=Ω ννν : .
It is well known that the variables vr,  are governed 

by the following equation
vr = , 






 += ][1 vH

c
E

m
ev . (11)

Here 6Rvr ⊂Ω×Ω .
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for  this  reason  (well  known  Liouville  theorem)  the 
measure  dvdr ×=∂ µ  is the invariant measure for a 

group  tT  (11),  i.e.  ttT µµ =0  for  all  ],[ ∞∞−∈t , 
that  is  easy to  see.  Consider  an invariant  measure on 

vr Ω⋅Ω , simplify to solve linear partial differential (4) 
by  eigenvalue  method,  because  we  now  have  the 
eigenvalue  problem  with  electro-magnetic  dependent 
coefficients and the zero eigenvalue. We claim that the 
eigenvalues will be points of the continuous spectrum 
and eigenvector of (5) will be chaotic in the phase space 
in the present case. It is interesting to know if it is the 
case and how should one solve this kind of eigenvalue 
problem when the system (11) is chaotic.

Let  us  consider  the  following  operator  L  that  is 
selfadjoint  extensions  of  the  operator  0L  in  Hilbert 

space ( )Ω2L . In accordance with the Stone theorem, the 

operator  ∗= LL  generates  a  group of  transformation 
itL

t eU = , such that

t
U

iL t
t

ϕϕ −
=

→ 0
lim .

Let  )(λke  be an eigenfunction of  the group  tU  
then

)()( λλ λ
k

ti
kt eeeU = ,

λLk dim,,1 = ,  where  λL  is  a  multiple  of  the 

point )(Lσλ ∈  and σ  is the spectrum of the L .

The  element  )(λke  belongs  to  the  space 
∗

− Ω=Ω )()( 11 vv HH  ([8] p. 387).
It  is  a  direct  consequence  of  the  existence  of  the 

invariant measure in dynamical system (11).
It  is  well  known  that  )()( 1 vk He Ω∈ −λ  and 

)()( vk Ce Ω∉λ  if  it  is  the  point  of  the  continuous 
spectrum.

In  this  case  the  first  integral  will  be  absent  for 
dynamical system (5) and it has become the transitive 
system.  In  particular  this  reasoning  yields  the  first 
integral  destruction.  A.  Einstein,  [7]  has  given 
conditions under which the first integral disappears.

Corollary 2. The electro-magnetic field in (11) can 
generate the ergodic or chaotic motion.  Suppose that  
ergodic is equivalent to the chaos. This reasoning yields  
an approach of the problem of deterministic chaos.

We return back to the Eq. (1) and assume that there 
is the stationary solution ),,( vrgf 00  for which:

1˚ There  exists  a  function  ),,( vrgV 0  such  that 
0=V  on the solution  ),,( vrgf 00 ,  where 00 sf =  at 

0rr = , 0vv = ,˚

2˚ The function V  is positive defined and founded 
on an arbitrary solution ),,,( vrtsf  of Eq. (1), here s  
is an arbitrary function such that

),,( 000 vrtfs = , δ≤−
c

fvrtf 0000 ),,(
3˚ The derivative V  of which in view of Eq. (1) is 

negative.
We are going to show that in this case the solution 

0f  of Eq. (1) is orbital asymptotically stable. 

In  fact,  for  the  function  ),,( vrtV  mentioned 
above we have an estimate

tvrtVvrtV ),,,(),,( 12 ≤

if 12 tt <  and 0lim =
∞→

V
t .

Thus  the  function  V  is  decreasing  and  V  is 
representing  its  total  time  derivative,  taken  under  the 
assumption  that  vr,  are  function  of  t ,  satisfying 
differential Eq. (5).

Note  that  a  perturb  have  initial  value,  i.e.  a 
perturbation  motion  appears  due  to  perturb  of  the 
function  s  only.  Now introduce  into  consideration  a 
function

∫
∆

= dtvrtfrrtV ),,()(),( η

and will show the one fulfils the conditions 1˚ – 3˚. A 
function η  is an arbitrary symmetric function such that

0),()( 0 =∫
∆

dvvrfrη . 

Its derivative has the form
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Indeed, in the case under consideration we get
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while
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The first integral equal to zero under the following 
condition

00 →
∞→

f
v

,

i.e.  the  function  f  is  a  quickly  decreasing  with  the 
increasing velocity v .

Corollary 3. The function V  be no positive if 
0<ωeR . It is easy to verify (see above) that 
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∫ =
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By using this reasoning Eq. (12) yields

∫∫
∗∗ ∆∆

⋅== dvfidvvrtsfLV ωηη ),,,(

or 0≥VRe  and 0≤VRe
 . 

Thus the particles beams under the above condition 
be orbital asymptotically stable for solution 0f .

Speaking about the condition of the asymptotically 
stable, we mean that the postulate in respect to the field 

),( HE  holds.
Thus  this  consideration  proves  that  in  domain 

∆⊂∆ ∗  there is  ),( HE  such that  the solution  0f  
Eq. (5) is the orbital asymptotically stable. Note that if 
the velocity  ),,( 321 vvvv  is such that the following 

condition constvvv =++ 2
3

2
2

2
1  holds, then we have case 

focusing and acceleration of bunched beam around 0f . 
It  is  easy to  see that  we can choose any unperturbed 
motion such that one is a motion of bunched beam along 
arbitrary axis of rotation. This can do always, because 
always,  there  exist  electric  and  (or)  magnetic  fields 
satisfying  the  Maxwell  equation  for  a  given  arbitrary 
motion, i.e. any (or) magnetic fields which satisfy the 
Maxwell Eq. (2). 

It follows that we can choose optimal fields.

4. CONSTRUCTION OF AN OPTIMAL 
ELECTRIC FIELD

We can assume without loss of generality that the 
matrix K  is given in the following form

∑ −=−= ,,1 iiiii kk α ,

where iα  is given number, the vector r  is one-

dimension vector xr ≡ , the velocity xv =  and 
11 ≤≤− v , i.e. it is normalized on c  (the speed of 

light). Then { }π≤=∆∆×∆=∆ xx :, 121 , 

{ }1:2 ≤=∆ vv , 
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nP̂  are the polynomials of Legendre.
Next we show how to choose the electrostatic field 

E  for the Vlasov-Poisson system
0),( =∂+∂+∂ fxtEfvf vxt  (13)

),(4),( xtxtU π ρ−=∆ ,
where ),(),( xtUxtE x∂−= ,

∫
∆

= dvvxtfxt ),,(),(ρ , and E  is such that the beam 

of particle focused and accelerated along axis  x .  For 
this purpose the distribution function ),,( vxtf  of the 
particles in phase space  ∆  will be sought in the form 

tievxff ω−= ),(0 .  The  substitution  of  tief ω
0  for 

f   yields  000 fifEfv vx ω=∂+∂ .

Next, we construct the function  0fNσ .  Thus we 

arrive  at  the  following  matrix  N
qrkK 1][= , 
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here ,1)1( =nP   ,)1()1( n
nP −=−  .,..,1|| Nn =

Let the matrix K  be given then the problem arises 
of  finding  the  field   E  under  which  the  formulas 

∫
−

−=
π

π

Nxrqi
qr dxxEeCk 1

)(
0 ])([  are  fulfilled.  Note 

that in this situation the NN ×  number qrk  are given 

and  NN ×  function   xrqie )( −  are  given  too,  it  is 
necessary to find the function ).,( xtE

Let exist some number  0>L  that  .),( LxtE ≤  

Thus  we  obtain  the  well  known  L  -  problem  of 
moments [3].

Now from Eq. (4) we can find ρ  and U .
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