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1. PROBABILISTIC DESCRIPTION 
PROBLEM OF FRACTALLY STRUCTURED 

MEDIA
Study  of  disordered  solid-state  media  during  last 

decades has resulted in the concept that fractality is the 
typical  property  of  their  structure  [1].  We  mean  the 
fractality  as  a  strong  nonuniformity  of  medium 
components space distribution with a wide spectrum of 
length scales characterizing that distribution (f.e., from 
10-1sm to 10-6 sm). Simplest example of such a situation 
is medium with a large volume fraction of hollows in 
comparison with volume fraction occupied properly by 
substance. Besides, it is impossible to characterize such 
a  structure  by  definite  number  of  space  scales  when 
averaging on space domains which are rather small and 
contain large number of particles. Most likely, one can 
observe, in this case, such a particle distribution which 
is  transformed  to  a  structure  being  locally  similar  to 
itself when the scale of averaging is changed in several 
times (conventionally, on the order). Thus, the fractality 
is structural recurrence on essential different scales of 
observation. It is developed on background of general 
disorder (of stochasticity). 

Traditional apparatus of theoretical physics is found 
inadequate  to  description  of  the  above  described 
physical  situation and some similar ones.  Firstly, it  is 
connected  with  the  fact  that  theoretical  models  were 
constructed  of  those  objects  which  are  locally  very 
simple from topological  point  of  view,  i.e.  they have 
definite topological dimensions (see, f.e., [2]). Mostly, 
opposite geometric concepts in the sense of Euclidean 
topology are used. Models were built either of isolated 
mass  points  (zero  dimension)  or  on  the  base  of  the 
concept  of  continuous  medium  (Euclidean  space 
dimension).

In accordance with the above-pointed out approach, 
following  probabilistic  models  named  random  point  
fields were  usually  used  when  modelling  disordered 
structures  in  statistical  physics.  They  are  some 
stochastic  analogies  of  nonrandom  geometric  objects 
with definite topological dimension. If dimension equal 
to  zero,  corresponding  point  fields  are  called  the 
ordinary ones.  Their  realizations  consist  of  isolated 
points  with  the  probability  one.  Many  models  of 
statistical mechanics are built on the base of point fields 
of similar type (see f.e. [3]). In the opposite case, when 
modelling heterogeneous disordered media (see f.e. [4]), 

random  point  fields  must  have  another  qualitative 
properties. They represent, with probability one, random 
domains  in  Euclidean  space  which  either  consist  of 
disconnected components with different forms and are 
randomly  situated  or  formate  random  connected 
labyrinths penetrated whole system space. In last case, 
ones say about presence of the percolation in stochastic 
geometry structure. It is possible mixed case also. From 
the  qualitative  point  of  view,  random  point  fields 
formed  by  the  above-described  way  are  called 
separable [5−7].  Last  term  means  that  each  their 
realization,  with  the  probability  one,  is  uniquely 
reconstructed  by  enumeration  of  all  its  points  which 
coincide with points of a standard countable set  being 
dense everywhere in space. 

Obviously,  constructing  of  probability  distribution 
for both above-described opposite qualitative types of 
random point fields is possible on the base of countable 
collection  of  distribution  functions  which  depend  on 
coordinates of space points. In first case, it is connected 
with  the  fact  that  each  realization  contains  only 
countable set of points and, therefore, one can realize 
corresponding distribution functions as depending ones 
on coordinates of sequentially increasing finite subsets 
of  realization  points  [3].  In  second  case,  distribution 
functions  depend  on  coordinates  of  sequentially 
increasing finite subsets of  .  In this time, probability 
distributions  of  random  sets  X  are  built  by 
Kolmogorov's method (see [7]) on the base of separable 
random field Θ(x |    X) such that their realizations are 
indicator functions of X.

The  above-marked  countability  of  distribution 
functions  collection  that  is  sufficient  for  probabilistic 
description of random point fields under consideration, 
is  their  essential  property,  since  each  probability 
distribution being built  on the base of an uncountable 
set  of  generating  random events  has  some  unsuitable 
properties that makes it to be unavailable for using in 
physical  problems.  In  particular,  it  does  not  allow to 
"measure"  physical  quantities  whose  possible  values 
depend on system state in an uncountable space point 
set  [8].  For  example,  when  modelling  stochastic 
geometry structures on the base of point random fields, 
such a quantity is the fractal dimension. 

Fractal is somewhat intermediate structure between 
the  model  of  isolated  mass  points  and  the  continuity 
medium.  It  contains  the  continuum  of  points  which, 

234 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2001, № 6, p. 234-237.



however,  are  distributed  rather  rare.  That  is  why,  a 
stochastic  fractal  is  impossible  to  describe  in 
probabilistic sense neither on the base of the ordinary 
random field  scheme or  on the base  of  the separable 
field  notion.  It  takes  place  because  of  its  realizations 
contain a point continuum and are not defined by each 
countable  subset  among  them.  At  this,  in  connection 
with  the  above-mentioned  circumstance,  i.e.  due  to 
necessity of introduction of a function collection being 
no  more  than  countable  and defining  the  situation of 
stochastic  fractal  points,  each  probability  distribution 
for  corresponding  structure  is  impossible  to  realize 
analytically on the base of functions depending only on 
point coordinates. 

Undevelopment  of  mathematical  models  for 
description of fractal media taking place to date may be 
explained by the above-shown contradiction. Just it is in 
spite of long history of the fractal theory beginning from 
mathematical  work  [9]  and  from pioneer  attempts  of 
physical applications in [10].

2. PROBABILITY DISTRIBUTIONS ON 
SPACE REFINEMENTS

Overcoming  of  the  contradiction  appearing  when 
trying  to  determine  probability  distribution  for 
stochastic fractally distributed structures is suggested if 
coordinate description of their points is interchanged on 
description on the base of imbedding space refinements. 
For  this  aim,  concept  of  the  space  basis  is  extended. 
Together with unit vectors  e1,...,  ed of coordinate axes 
and the origin, it is included additional element in the 
basis, i.e. the integer N>1 that we shall call subdivision 
parameter. Let, for simplicity, the imbedding space be 
the cube Λ= [0, L]d ⊂d, d=2,3. One of its vertices is the 
origin and corresponding ages form the basic frame. We 
shall  call  collection  of  disjoint  identical  cubes  

)(A m
x , 

m=0,1,2,.. having the age size L/Nm . This collection we 
shall name the m -order cellular subdivision of space Λ. 
Each vector x serves as a mark for each of these cubes. 
Vectors x refer  to  vertices  which  are  similar  to  the 
origin. Let us denote {}m the set of all possible vectors 
x at fixed m. Then each set Z⊂Λ is defined by sequence 
of  its  roughening Km(Z),  m=0,1,2,...on  corresponding 
subdivisions.  Roughening  operators  are  defined  by 
formula


∅≠∩

=
Z

m
m

m
Z

)(A:

)(A)(K
xx

x .

The sequence ={m, m=0,1,2,...} of all subdivisions is 
named  the   refinement of  imbedding  space.  At  fixed 
value m, the collection of all subsets H⊂Km is finite and 
equal  to  2|m|,  |m|=Ndm.  Further,  the sign |  ⋅ |  denotes 
number of elements in the set that must take place of the 
dot. Therefore, the collection of all H⊂m for possible 
values  m  is  countable.  Thus,  we  get  opportunity  of 
probabilistic  description  of  each  stochastic  geometric 
structure with realizations X by means of probabilities

Pm (H) = {X : Km (X) = H}. (1)

At this, naturally, it  is necessary to exclude H≠∅,  i.e. 
Pm(∅)=0,  and,  due  to  obvious  inclusions  Km+1(X)  ⊂ 
Km(X),  probabilities  Pm(H)  must  satisfy the  following 
consistency condition 

Pm(H) = ∑
=

+
H(G)K:G

1m
m

(G)P , H ⊂m (2)

It  is  found  that  probabilities  Pm(H)  for  all  m, 
m=0,1,2,...of  space  refinement  such  that  Eqs.  (2)  are 
satisfied,  determine  a  probability  distribution  on  so-
called σ-algebra generated by random events {X: Km(X) 
= H}, H⊂m, m=0,1,2,.... However, a peculiar proof of 
this fact must be done, since these events do not form 
neither  Borel's  system  [8]  traditionally  used  in  the 
random processes theory nor Dynkin's system [11]. In 
other words, it is necessary to prove the special theorem 
about  the  measure  continuation  for  case  under 
consideration. 

After  solution  of  basic  problem  about  statistical 
description of stochastic fractals, it  is necessary to be 
learned how suitable phenomenological models may be 
synthesized using some simple probabilistic conjectures 
concerns their geometric structure.  In this case,  many 
possibilities appear and it is necessary to be guided by 
definite physical arguments when constructing model in 
order to describe somewhat physical reality.

3. PRINCIPLES OF MODEL 
CONSTRUCTION OF FRACTALLY 

STRUCTURED MEDIA
First  of  all,  we must  notice  that  the  mathematical 

method  described  in  previous  item  is  universal.  It 
permits to define probability distribution, in principle, 
for  any  random  set  in  Λ,  in  particular,  well-known 
geometric models used in the stochastic fractals theory 
are included, i.e. fractal lines and fractal surfaces which 
are graphs of separable random fields. However, at first, 
description of these structures by the way pointed out is 
found to be inconvenient, and, at second, they are not 
objects of our consideration. Since each fractal medium 
is a thermodynamic system, so, in particular, it must be 
fill  out  whole imbedding space in average. Therefore, 
for selecting those random point fields which describe 
fractal  media,  we  must  require  reliability  of  the 
translation invariance  in  stochastic  sense  (at  least,  on 
sufficiently large scales of averaging). In ideal case, this 
property is expressed mathematically in the form

P{Γ + a} = P{Γ},

where  Γ is an arbitrary random event,  Γ={X} that has 
definite probability, 

Γ+ a = {X+ a}, a∈d , ||a|| <<L .

Further, geometric structures having modelled must 
be  topologically  and  metrically  uniform.  The  most 
important  topological  characterization  of  each  fractal 
that  dictates  it  properties  in  a  great  many,  is  the  so-
called  fractal  dimension  D  (see  [12]).  Here,  we 
determine it on the space refinement by the following 
way 
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D= inf{δ: mdδ
m

N
(X)Klim

∞→m
= 0}. (3)

It follows from this formula that D, in general case, is a 
functional  of random realization X, so it  is  a  random 
value.  Therefore,  the  requirement  of  the  topological 
uniformity  is  reduced  to  selecting  such  models  of 
stochastic  fractals  that  value  D  is  constant  with  the 
probability one. Metrical value closely connected with 
the dimension D is the so-called fractal measure µ(⋅). It 
is a function of X B, where B is any domain in Λ. From 
the physical point of view, this function is the volume of 
matter concentrated in that part of fractal realization X 
which is cut out by B. The measure µ is defined on the 
base of space refinement by the formula 

µ(XB)=inf{s( mN
L

)|{x: (m)
xA BX≠∅}|} (4)

where the function s(λ) is positive at λ>0 and such that 
0=

0→λ
λ )(lim s .  That  function is  determined precisely to 

asymptotic  equivalence.  We  name  the  measure  µ 
defined by the way as measure of s -type. Obviously, µ 
is a stochastic measure since its values depend on the 
realization X. The value µ(B X) may be considered as a 
random field  on  Λ when  collection  of  domains  B  is 
restricted by the ensemble {B: )(nA0  + z ; z∈ Λ}.

Essentially,  the s -type measure may be nontrivial 
for each point z only at special choice of the function s 
to within asymptotic equivalence. The non-triviality is 
implied  in  the  sense  that  the  measure  is  finite  and 
nonzero.  Just  the  measure  type  is  the  metrical 
characterization of fractal. However, it may be changed 
for each fixed fractal realization X when z ∈ Λ varying. 
Besides, it  may properly depend on the realization X. 
We shall  imply  the  metrical  uniformity  of  fractal  as 
such a property when the measure type does not depend 
both on X and on  z.  In this case, we shall speak that 
measure is uniform and has a nonrandom type. 

For topologically uniform fractal with dimension D, 
the function s(⋅) may be chosen in the form s(λ)= λD g(λ
), where g(λ)>0 and it is a function slowly varying at 
zero, 

1=+
0→ )(

C)(lim
λ

λ
λ g

g
. (5)

Presence  of  uniform  measure  having  nonrandom 
type on given fractal permits to introduce by identical 
manner a stochastic integral on each realization X, 

∑∫
∈

∩=
n

X)(A)v(inf(dx))v( n

X x
xxx µµ

n .

In turn, it permits to introduce some fractal bundles, i.e. 
to introduce fields of physical values on X. At this, each 
physical  value is  connected not with points  z∈ X but 
with fractal part contained in each domain B⊂Λ, i.e. the 
field  is  implied  as  a  linear  functional  V[v]  of  any 
function v(z) on Λ,

V[v] = ∫
∩ BX

)(d)( xx µv .  (6)

Let us remark that one may to require some special 
properties  when  fractal  medium  modelling.  Namely, 
fractal  may  have  or  may  have  no  such  global 
topological property that is named the percolation. Also, 
it  may  have  the  isotropy  property  in  average  and/or, 
analogously,  the  self-similarity  one.  They  are  named, 
correspondingly,  the  stochastic  isotropy and  the 
stochastic  self-similarity.  Mathematically,  they  are 
expressed in the following form 

P{R Γ} = P{Γ},     P{λ Γ} = P{Γ},

where  R  is  an  arbitrary  space  rotation  matrix  RΓ = 
{RX} and 0< λ <1 , λ Γ={λ X}. However, presence of 
stochastic  self-similarity  is  possible  only  for  special 
choice of similarity factors λ.

4. SIMPLEST STOCHASTIC MODELS
We shall consider random point fields in the cube 

Λ= [0, L]d ⊂ Rd, d=3. Let H ⊂ m.  Then for each l < m, 
this set is represented in the form of a disjoint union of 
some subsets Sl(x,H), x∈ Kl(H) where Sl(x,H) ={y ∈H: 
Kl(y)  =  x}.  They  are  originals  of  points  x  at  the 
roughening operation. It is obvious that 

Pm+1(H) = Qm(H| Km(H))Pm(Km(H)),   (7)

Qm(H|Km(H))=P{X:Km+1(X)=H|Km(X)=G}.

For each m = 1, 2,... and for each x∈m at fixed number 
m, it is defined by uniform way the "similarity" map T : 
Sm(x,m+l) → l  which consists of the coincidence of the 
cell  Α(m)

x with  the  cell  Α(m)
0 and of  the  consequent 

extension it in Nm times up to the coincidence with Λ.
Let  us  consider  now  the  so-called  random  point 

fields with markovian refinements. The distinctive their 
property consists in the explicit construction conditional 
probability in the following form

∏
∈

=⋅
G

H)),(q(TSG)(H,Q
x

xmm , (8)

where  the  function  q(⋅ )  >  0  is  defined  on  such  a 
collection of all subsets of the set  ℜ1   which does not 
contain the empty set ∅. This function is the probability 
distribution  on  the  pointed  out  space  of  elementary 
random events, i.e.  

.)q( 1=∑
1ℜ⊂≠∅ σ
σ

The  simplest  class  of  random  point  fields  models  is 
realized by formulas (7), (8) when q(σ ) = p(|σ|) where |
σ| is the number of elements in σ and 

αl l)
p1

pC(p(l) ⋅
−

= ,    l = 1, 2, ..., Nd, (9)

where α ≥ 0, 1 > p > 0 and the constant C is determined 
on the base of  the normality condition 
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( )∑
1=

1=
d

dN

l

N
l .p(l)

For random point fields defined by formulas (7)−(9), it 
has  proved  [13]  that  their  fractal  dimension  D  is 
nonrandom and  it  is  the  same  for  all  regions  of  the 
fractal  under consideration. The dimension D may be 
calculated in such case on the base of the formula

.
Nln

)q(||ln

D 1

∑
ℜ⊂≠∅

=
σ

σσ

In particular, the above mentioned example of stochastic 
fractal that is determined by the function (9) at α=1, we 
found 

.
Nln

1))p(Nln(D
d −+1=

5. OBSERVABLES
At last, we shall indicate how physical properties of 

fractal  structures appear.  One of  important observable 
geometric  value  is  the  structure  factor  I(k) being  a 
function  of  wave  vector  k.  It  is  measured 
experimentally  by  dispersion  of  electromagnetic 
radiation and is defined analogously to [4], 

I(k)=〈µ(-1)(X) )(d)(d)}(exp{
X

yxyxk µµ∫ −− i 〉. 

In general case, statistical moments of random function 

)(d}exp{
X

xkx µ∫ − i

depending on k are such observables. Thus, probability 
distribution  of  this  function  is  observable.  From this 
point of view, main theoretical problem is evaluation of 
all  possible  statistical  characterizations  of  that 
distribution.  They  are  defined  on  the  base  of  the 
characteristic functional 

[u]=exp{i 〉−∫∫ )}(d}exp{d)u(
X

xkxkk µi ,  (10)

where  u(k) is  an  arbitrary  continuous,  rapidly 
decreasing  function  on  3.  Denoting  ū(x)  its  Fourier 
image,  we  see  that  moments  <µ(dx1)...µ(dxn)>  of  the 
stochastic measure  µ(⋅) are subjected to determination. 
Their calculation is fulfilled by averaging on the base of 
probability distributions 

Qn[x1,...,xn]= ∑
1=⊂∈ n,...,H,A:H

m(H)P
in

ix , m≤ n (11)

which conserve their sense when passing to limit both 
on subdivision order m and on L (the thermodynamic 
limit).

6. PROGRAM
In connection with the approach to theoretical study 

of  fractal  media  projected  in  this  communication, 
following principal questions may be set up. 

1. How  to  synthesize  random  point  fields  with 
guarantee of their topological and metrical uniformities 
in frameworks of introduced mathematical concepts?

2. How to construct models having those or others 
remarkable geometric properties, i.e. stochastic isotropy 
and/or  local  stochastic  self-similarity,  presence  or 
absence of percolation? In last case, study of percolation 
phase  diagram  in  the  model  parameter  space  is 
necessary.

3. How to calculate the structure factor by effective way?
4. How  to  construct  phenomenological 

thermodynamics  for  media  that  is  described  by 
mathematical  models  of  introduced  type?  Apparently, 
surface tension must play peculiar role in this case. (We 
are grateful  to S.V. Peletminskii  who pointed out  this 
fact to us.)

5. How  to  build  statistical  mechanics  of  physical 
values fluctuations (including nonequilibruim ones) on 
stochastic fractals? 

6. How  to  construct  macroscopic  electrodynamics 
and elasticity theory for media being stochastic fractals?
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