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Absorption CrH and FeH bands are of importance for study of atmospheres of ultracool dwarfs
(Teff < 2200 K). Results from calculations of synthetic spectra of these objects using the new
theoretical CrH and FeH opacities obtained by Burrows et al. [2] and Dulick et al. [3], respectively,
are discussed. Comparison of the CrH and FeH spectra computed with the JOLA approxima-
tion and Burrows data is carried out. Dependencies of SEDs of ulracool dwarfs on temperature,
gravity, dust opacity are discussed. We compare our synthetic SEDs with an observed spectrum
of Kelu-1 (L2).

INTRODUCTION

In this paper we deal with the opacities provided by hydrides CrH and FeH in atmospheres of ultracool dwarfs.
Due to low temperatures and high pressures in the atmospheres, Ti and V atoms are bonded into grains.
The CrH and FeH molecular bands play more important roles in spectra of ultracool dwarfs, they are the main
sources of the opacity in atmospheres of L-dwarfs near λ= 1 mkm. In particular, the 0–0 and 1–0 bands of
the CrH A6Σ+−X6Σ+ transition are used as primary markers for a new L-dwarf spectral class. First numerical
studies of the CrH A6Σ+−X6Σ+ transition were based on the raw CrH band data, but they allowed to estimate
such for this transition important parameters as the oscillator strengths [4]. For the FeH molecules oscillator
strengths were to be estimated too. Detailed studies of the CrH and FeH bands were impossible without
an precise line list. Recently, ab initio calculations of the CrH and FeH line positions and strengths were made
by Burrows et al. [2] and by Dulick et al. [3], respectively. We use them by analysis of molecular bands of these
species in spectra of ultracool dwarfs.

PROCEDURE

Considering the chemical equilibrium of more than 100 species in the LTE, we compute the theoretical spectra
using a version of the WITA program developed by Pavlenko [5]. We use the DUSTY and COND model
atmospheres calculated by Allard [1] for two limited cases of the dust formation: an inefficient gravitational
settling (dust depletes refractory elements and affects the thermal structure of the atmosphere) and an efficient
settling (dust affect only the depletion of the gas). To compare our SEDs with observations we include the opacity
of a dust cloud with a certain thickness which is located at a given depth in the atmosphere. Then, we assume
that extended profiles of the K I and Na I resonance lines can be described by the Voight profile.

RESULTS

• Results of calculations for CrH and FeH molecules are presented in Fig. 1, which shows the SEDs computed
taking into account the only molecular source of the opacity – CrH, FeH or TiO molecules in the DUSTY
model 18/5.0/0.0. For comparison, a TiO spectrum is also presented here, since TiO molecules are one of
the main sources of the opacity in atmospheres of M-dwarfs.

• Dependence of the density ratio of CrH and FeH molecules on the effective temperature and surface gravity
of a model atmosphere is studied. In Fig. 2 the density ratio of CrH and FeH molecules versus the gas
pressure is presented for a set of model atmospheres. At the left-hand panel one can see the dependence
of n[CrH]/n[FeH] on the temperature, on the right-hand panel – on the surface gravity of the atmosphere.
We show here differences between results obtained for the COND and DUSTY models.
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Figure 1. Synthetic spectra calculated by taking into account the TiO, CrH or FeH opacity using the DUSTY model
18/5.0/0.0. The thin solid curve shows the continuum
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Figure 2. Dependence of the concentration ratio n[CrH]/n[FeH] on the temperature (a) and gravity (b)
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Figure 3. Comparison of a synthetic spectrum obtained with the use of the DUSTY model 18/5.0/0.0 and the JOLA
approximation with the Burrows’s calculations for CrH molecule
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Figure 4. Comparison of a synthetic spectrum for the COND model 22–4.5–0.0 with an observed spectrum of the L-dwarf
Kelu-1 [6]. For the calculations the opacity of a dust cloud with the optical thickness τtot = 1 at the depth τ = 0.005 is
used

• We compare synthetic spectra computed with the Burrows data and with the JOLA approximation that
were used in the first analysis of the CrH bands in atmospheres of L-dwarf [4]. As shown in Fig. 3 the JOLA
approximation describes the main spectrum features near 760 nm and 870 nm quite well. This proves
that the molecule oscillator strengths of the CrH A6Σ+ − X6Σ+ transition estimated by Pavlenko [4] –
gf = 0.006 ÷ 0.012 – are very close to the precise ones.

• To compare our results with observed spectra we computed the SEDs taking into account the opacity of
dust clouds with various parameters. In Fig. 4 we present an observed spectrum of the L-dwarf Kelu-1 and
a synthetic spectrum calculated for a dust cloud with the optical thickness τtot = 1 located at the depth
τ = 0.005; the COND model atmosphere 22–4.5–0.0 is used.
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