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To improve the beam bunching at the initial stage of acceleration it is necessary to create an increasing field distri-
bution. Such distribution can be created in the ordinary disk-loaded waveguide in its stopbands. Generally, there are 
two eigen evanescent waves, one of which has increasing distribution along the longitudinal axes and another - de-
creasing one. The field structure in the bounded system is a superposition of these two evanescent waves whose am-
plitudes are determined by the operating frequency and by the geometry of the boundary cavities. The results of the 
simulation of the buncher for the case of the 25 keV injected electron energy are presented in the paper.
PACS numbers: 29.27.-a

1  INTRODUCTION

To improve the bunching process at the initial stage 
of  acceleration it  is  necessary to  create  an increasing 
field distribution. It was shown, that the amplitude dis-
tribution of the eigen oscillations in the bounded period-
ic structure within the stopband corresponds to the in-
creasing amplitude distribution [1]. It is known, that in 
the boundless periodic structure two eigen electromag-
netic oscillations exist. In the passbands the eigen oscil-
lations represent travelling waves. In the stopbands the 
eigen oscillations do not transfer energy in the direction 
of periodicity and have either a decreasing or increasing 
character. In the bounded periodic structure it is possi-
ble to create the field distribution corresponding to the 
one (increasing or decreasing) eigen oscillation. The in-
creasing  field  distribution  cannot  be  obtained  in  the 
smooth waveguide. As a result of the boundary condi-
tions,  the  amplitude  of  the  increasing  solution  in  the 
smooth waveguide is always less than the amplitude of 
the decreasing one.

2  MATHEMATICAL MODEL

Bunching system based on the segment of cylindri-
cal disk-loaded waveguide is considered. To investigate 
the field distribution in this structure we use the oscilla-
tion equations of the weakly coupled cavities. The cou-
pling between the neighboring cavities is taken into ac-
count [2].

The most of the accelerating structures operate in the 
Е010 – mode. The field amplitude distribution of Е010 – 
mode in the structure consisting of  N cavities is deter-
mined by the set of N equations:
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where An is  the  field  amplitude  in n-th  resonator, 

n=1, 2,…N; )(3
2

1
2
1 aJπ

χ = , 
Db

a
2

3
χε = , 

NN
N Db

a

,1
2
,1

3

,1 χε = , 

NN
N DDbb

a
,1,1

3

,1
~ χε = , a is the radius of coupling aperture, 

b is the radius of the cavity, D is the length of the cavi-
ty, ω0  is the  resonant frequency of  the  n-th cavity (n≠
1,N), ω1 is the resonant frequency of the 1-st cavity, ωN 

is the  resonant frequency of the  N-th cavity. Equations 
(1.1-1.5) are true in the case of thin diaphragms. The set 
of equations (1.1-1.5) is the set of homogeneous differ-
ence equations of the second order with constant coeffi-
cients. The field amplitude distribution in the boundless 
structure is  determined by the set  of equivalent  equa-
tions, which are similar to the equation (1.3). There are 
two  partial  solutions  of  this  equation:  n

nA 1ρ=  and 
n

nA 2ρ= , where 12
2,1 −±= ββρ  are the roots of the 

characteristic equation 0122 =+− β ρρ . The value  β is 
defined as:
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At first, the ideal structure ( ∞=0Q ) will be consid-
ered. In the passband, when the frequency changes from 
ω0 ( 1=β )  up  to  ωπ ( 1−=β ),  nie ψρ =1  and 

nie ψρ −=1 . The phase shift per cell is defined from the 
dispersion  equation:  βψ =cos .  In  the  stopbands, 

0ωω <  and πωω > ,  the values 21 ρρ ,  correspond to 

the evanescent oscillation: 121 ≠,ρ . At the frequencies 

ω>ωπ 21, ρρ  take  the  negative  values: πρρ ie11 = , 
πρρ ie22 = . 

The  field  amplitude  distribution  in  the  bounded 
structure equals to the sum of two partial solutions with 
constant  coefficients  –  nn

n CСA 2211 ρρ += .  Excluding 

1A  from (1.1, 1.2) and AN  from (1.4, 1.5), we get the set 
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of equations to define C1, C2:
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The set of equations (3) has the non-trivial solution 

if determinant is equal to zero:
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This equation determines the resonant frequencies of 
the  bounded  structure.  The  structure  consisting  of  N 
cavities has  N resonant frequencies. Resonant frequen-
cies  of  the  structure  with  half  boundary  cells 
(D1 = DN = D/2) lay within the interval ω0 ≤ ωn ≤ ωπ. In 
this case, the resonant oscillation represents a standing 
wave  formed  by  two  traveling  waves –  ni ne ψ  and 

ni ne ψ− , ψn = πn/(N-1), n=0, … N-1.
Let us consider the case, when the cavity chain has 

arbitrary (not half) boundary cells. Suppose, that at the 
some frequency  1ω ′  the following conditions  are  ful-
filled:

0f 211 =+′ ρω )( , 0f 111 ≠+′ ρω )( ,         (5.1)
0f 11N =+′ ρω )( , 0f 21N ≠+′ ρω )( .       (5.2)

If  boundary  cells  differ  from  other  ones  only  in 
length - D1 = ξ1D, DN = ξND, than conditions (5.1), (5.2) 
will have the form:
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In  this  case,  as  it  follows  from equations  (3.1,  3.2), 
C1=0.  The  field  amplitude  distribution  is  as  follows: 

n
n СA 22 ρ= .

By similar way, one can obtain conditions for creat-
ing  the  field  amplitude  distribution  of  the  form

n
n СA 11ρ=  at the some frequency 2ω ′ .

At the frequency  1ω ′  ( 2ω ′ ) the resonant oscillation 
of the structure consisting from  N cavities is based on 
the one eigen oscillation of the boundless structure. As 
ξ1, ξN > 0, than πωωω >′′ 21 , . Hence, the eigen oscilla-
tion is based on evanescent oscillation of the boundless 
structure. Let us suppose, that at the frequency  ω > ωπ 

1ρ  is less than one ( 11 <ρ ) and  2ρ  is grater than 

one ( 12 >ρ ). So, at the frequency  1ω ′  the amplitude 

distribution in the structure ( n
n СA 22 ρ= ) is an increas-

ing one:  nn AА >+ 1 ; at the frequency  2ω ′  the ampli-

tude distribution in the structure ( n
n СA 11ρ= ) is a de-

creasing one:  nn AА <+ 1 . It is easy to show that both 
for  increasing  and  decreasing  amplitude  distributions 
the following condition is satisfied:

D1 + DN = D.                            (7)
The  resonant  oscillation  of  the  structure  with 

D1 > D/2,  DN < D/2,  D1 + DN = D at  the  frequency 

ω > ωπ corresponds to the increasing eigen oscillation 
(Fig. 1, curve b); as for the decreasing one, the length of 
the  boundary  cavities  must  fulfill  such  conditions: 
D1 < D/2, DN > D/2, D1 + DN = D (Fig. 1, curve а).

Consider the case, when the structure is exited at the 
frequency 1ω ′ .  Taking into account losses in the struc-
ture, one can obtain:
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As one can see, the amplitude distribution depends on 
the number of cavities. When 1)()1(2

2 < <− QN δρ , than 
C1 << C2. In this case, the amplitude distribution in the 
structure is increasing. If  1)()1(2

2 ≈− QN δρ ,  then the 
amplitude distribution represents a superposition of two 
eigen oscillations. When N → ∞, than C1 >> C2 and the 
amplitude distribution is decreasing. It satisfies the con-
dition that in the half-bounded structure the increasing 
distribution cannot be realized.

One resonant frequency of the structure, the bound-
ary cells of which differ from half ones, lays outside the 
passband:  ω > ωπ.  If condition (7) is not fulfilled, the 
resonant oscillation represents the sum of two evanes-
cent oscillations (Fig. 1, curve c). 
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Fig. 1. Amplitude distribution in the structure con-
sisting of 7 cavities at the frequency ω=1.004ωπ:  

a=1.5 см, b=4.4026 см, D =2.438 см;
curve а – D1 =0.9698 cm, DN = 1.4682 cm;
curve b – D1 =1.4682 cm, DN= 0.9698 cm;
curve c – D1 =1.4682 cm, DN =1.219 cm.

We considered the situation, when we changed only 
the length of the boundary cells. Similar effect can be 
achieved by changing the eigen frequencies of boundary 
cavities. Resonant frequency of the Е010 - mode is in in-
verse proportion to the radius of the cavity. Let us des-
ignate – b1 = ζ1b, bN = ζNb. We shall suppose that D1 = 
DN = D.

For the realization of the increasing field amplitude 
distribution  n

n СA 22 ρ= ,  С1 = 0 (Fig.  2,  curve b) it  is 
necessary to select the resonant frequency of the bound-
ed structure laying above ωπ , and to satisfy conditions 
(5.1, 5.2). Setting πωω >′1 , we define the values ρ1, ρ2. 
Coefficients ζ1, ζN, which determine the radii of bound-
ary cavities with respect to other ones, are defined from 
two nonlinear equations:
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To obtain the decreasing amplitude distribution one can 
reverse boundary cells (Fig. 2, curve a).
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Fig. 2. Amplitude distribution in the structure con-
sisting of 7 cavities at the frequency ω=1.004ωπ:  

a=1.5 cm, b=4.4026 cm, D =2.438 cm;
curve а – b1 =4.1636 cm, bN = 4.2516 cm;
curve b – b1 =4.2516 cm, bN = 4.1636 cm;

curve c – b1 = bN =4.1825 cm.

3  SIMULATION

Proceeding from the above-presented theory, the in-
jector system based on evanescent oscillation was simu-
lated using SUPERFISH [3] and PARMELA [4] codes. 
The simulation was held under the electron beam initial 
energy  W0=25  keV  and  current  50  mA  with  space 
charge forces taken into account. Peak value of on-axis 
electric field is 30 MV/m.

Waveguide section composed from five accelerating 
cells  was  taken  for  simulations  of  bunching  system 
based on disk-loaded waveguide. It is well known that 
the disk-loaded waveguide has many stopbands.  As a 
working stopband we have chosen the second stopband 
of the symmetric wave. If we want to work in the stop-
band, the conditions for the eigen frequency of the sys-
tem to lay in the stopband must be created. The simplest 
way of creating such situation is shifting the frequency 
of the last cell. In the second stopband the phase shift 
per cell equals π (ρ<0). The time-transit angle for rela-
tivistic particle was chosen equal to π30.  per period. As 
a result of simulations, the on-axis increasing field dis-
tribution was obtained. The results are shown in Fig. 3.

Fig. 3. Geometry of bunching system base on disk-
loaded waveguide and corresponding on-axis elec-

tric field distribution.

Electrodynamic performances of the simulated sys-
tem are the follows: the quality factor Q=11163, shunt 
impedance  Rsh=39.8  MOhm/m.  Simulation  of  particle 
dynamics in the system has shown that the maximum 
energy is 0.779 MeV, average energy is 0.697 MeV, en-
ergy spectrum is 9% (70% of particle), phase length is 
32°, normalize emittance is 28 mm⋅mrad and capture is 
91.2%.

4  CONCLUSION

The increasing amplitude distribution necessary for 
the effective bunching process can be obtained in the 
regular disk-loaded waveguide. Results of simulation of 
the bunching process show the efficiency of using the 
bunching system on evanescent oscillations. It was also 
shown that in the bounded structure with losses ampli-
tude distribution depends on the number of resonators.

The authors express gratitude to V.A. Kushnir and 
V.V. Mitrochenko for the participation in discussing the 
results.
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