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1. INTRODUCTION
The  possibility  of  generation  of  monochromatic 

X-ray radiation by backward scattering of laser light on 
a relativistic electron beam attracts now special  atten-
tion [1,2]. The frequency transformation easily follows 
from simple  kinematic  relations  and  has  an  order  of 
magnitude  of  24γ  where  γ  is  Lorentz  factor.  Be-
sides,  the  scattered  X-rays  are  well  directed  (angle 

1 γ≈ ) what is typical for radiation from high energy 
electrons. A weak point of the method is a rather small 
cross-section which imposes serious requirements upon 
the laser power and the beam density.

It is rather obvious that electron beams circulating in 
a storage ring are preferable from this point of view if 
their  life-time is  large  enough.  The  latter  depends on 
many factors including transverse spreading of the beam 
inherent in the method and caused by the recoil of emit-
ted hard quanta. This effect is well known for cyclic ac-
celerators  in  connection with quantum fluctuations  of 
synchrotron radiation. However, in our case a quantum 
is essentially harder and requirements to the beam trans-
verse size are more stressed.

Similarly, one could count on radiation cooling also 
inherent  in  the  scattering  process.  Really,  a  radiation 
quantum should be re-emitted practically along the in-
stantaneous velocity of a relativistic electron which gets 
both longitudinal and transverse recoil momentum. The 
first is restored by the RF compensating system while the 
second produces a radiation "friction" exactly in the same 
way as in synchrotrons. Although one can not expect re-
ally strong damping for existing parameters the effect has 
to be considered because the spectral and angular distri-
bution  of  the  scattered  light  differs  from that  in  syn-
chrotrons and depends on parameters of the laser beam.

2. LASER COOLING
We  neglect  below  intrinsic  damping  due  to  syn-

chrotron radiation and consider electrons performing in-
dependent synchrotron and betatron oscillations:
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Here u  is a relative energy deviation from the equilibri-
um value, β  and ψ  are periodic structure functions of 
the magnetic system, R is the mean radius of the equi-
librium orbit, primes denote derivatives with respect to 
the orbit arc  s .  The value  ε  has the meaning of the 
area enclosed by a phase trajectory ellipsis in the phase 
plane ( )xx ′,  being an integral of motion. For bounding 
phase trajectories it  is identified as a transverse emit-
tance. Being expressed via phase plane coordinates it is 
equal to
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Meeting  a  laser  photon  at  the  light  and  electron 
beams  crossing  point  the  electron  energy  is  instanta-
neously changed by the value  u∆  keeping the coordi-
nate y  and the instantaneous velocity y ′  constant. The 
latter means that the scattered photon is emitted perfect-
ly along the electron trajectory. With the same precision 
one can neglect the energy change when a relatively soft 
laser photon is absorbed. As a result, the integral ε  ex-
periences the instantaneous change:
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Here and below the structure functions and their deriva-
tives are taken at the crossing point. A destination of the 
second order changes will be considered later.

To find the average variation rate dsdε  the expres-
sion above is to be multiplied by the scattering probabil-
ity ( )yyuP ′∆ ,,  and averaged over all betatron phases. 
To do this we present the probability as an expansion
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The first term here is the probability of an  "ideal" 
collision with the equilibrium electron, the second and 
the third ones describe coordinate and angular discrep-
ancies  between the electron and light  beam axis.  The 
last term corresponds to a possible influence of lack of 
synchronization between electron and light pulses.

Note that after averaging over phases denoted below 
by angular brackets all terms of the first order with re-
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spect  to  uuyy ′′ ,,,  vanish.  Besides,  it  follows from 
Eqs. (1)-(2) that
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So we get
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The same arguments give for the synchrotron emittance
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Besides the re-emission process, the transverse emit-
tance is influenced by the RF field necessary for radia-
tion  losses  compensation.  We  shall  suppose  it  being 
concentrated within a narrow accelerating gap normal to 
the equilibrium orbit. A particle gets there an instanta-
neous increase in energy, keeping y  and u ′  constant. 

There is a simultaneous change of  y ′  because the ac-
celerating field does not change the transverse momen-
tum yp .

For this reason the change of the emittance has to be 
calculated under condition

uyu
p
p
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as far as in the ultrarelativistic case the relative changes 
of energy and of total momentum p  are equal to each 
other. Moreover, the probability of the gain is now iden-
tically equal to unity because the energy income does 
not depend on the possible scattering at previous turns.

Noting that P u− ∆  is equal to the relative energy W  
emitted per one turn we get the increments of betatron 
and synchrotron oscillations damping:
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They have much common with the usual radiation 
damping decrements but contain the local values of the 
structure functions. In particular the theorem about the 
decrements sum [3] looks as

u
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It says that the coordinate and angular discrepancies of 
laser and electron beams do not influence the total phase 
volume and yield a decrement re-distribution only. By 
the way, the term proportional to the coordinate shift be-
tween the beams vanishes unless the beams have a zero 
crossing angle.

Bearing in mind that the intensity of radiation of a 
relativistic particle is  proportional  to the square of its 
energy the relation (12) can be rewritten as

.3Wsb =Γ+Γ (13)

The laser cooling as opposed to synchrotron radia-
tion one depends on the laser power and thus on the fi-
nal output of hard quanta. In certain ambitious projects 
the damping time can be less than a millisecond. This 
might  provide  a  serious  limitation  of  the  emittance 
growth due to quantum fluctuations discussed below.

3. EXITATION BY RECOIL MOMENTUM 
FLUCTUATIONS

A quantum nature of radiation is  described by the 
next terms of expansion of  bε  and  sε  over powers of 

u∆ . Bearing in mind that in the limit of 0→h
( ) WEPu q=∆ 0

2
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the scattering process results in the emittances increase 
rate:
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where Ω  is a synchrotron frequency, q  is a harmonic 
number, and ψα =  is a momentum compaction factor.

This rate has to be compared with damping due to 
laser cooling. Note that both are proportional to the laser 
power so that the final steady-state emittance has a uni-
versal value of order of
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This value determines, of course, whether the stored 
electrons can be exploited for a long time or they would 
be burning down and require continual reinforcement.

4. ON OPTIMIZATION OF THE STRUC-
TURE FUNCTIONS

It is easy to see that to make the emittance growth 
smaller the value of
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should  be  as  small  as  possible  at  the  crossing  point 
while  the  mutual  geometry  of  the  electron  and  light 
beams can influence the decrements redistribution only 
(here and below ψβ ,  are again the structure functions 
of  s ).  Note  that  they  are  not  independent  as  far  as 

( )sψ  is a periodic solution of 
( ) ( ) RsKsg /=+′′ ψψ (18)

while the amplitude function ( )sβ  satisfies the nonlin-
ear equation

( ) ( ) 2/32/12/1 −=+″ βββ sg (19)

with the same focussing function  ( )sg . Here  ( )sK  is 
the equilibrium orbit curvature.
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Multiplying  Eq.(18)  by  1/ 2β  and  Eq.(19)  by  ψ  
gives the general  equation relating the structure func-
tions
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Using this relation and differentiating U  with respect to 
s  to find an extremum we have:

.2 2/1
2/3

′







=′

β
ψβ

R
KU (21)

Thus, U  reaches its extremal values at the same points 
where 2/1/ βψ  does while ( ) extrextrU 2/1βψ= .

Within a straight section  U  is a non-zero constant 
which can be expressed in terms of the positive β  func-

tion. Really, considering dsϕ β= т  as an independent 
variable in Eq. (20) we have
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with  the  periodicity  conditions  on  the  interval 

π νϕ 20 ≤≤  where ( ) ∫−=
R

ds
π
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1 /2  is the beta-

tron oscillation frequency.  The solution is  straightfor-
ward:
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At a point  of an extremum where  ( ) 02/3 =′βψ  the 

function U  reaches the value
22
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So, one can say that the excitation of oscillations al-
ways  takes  place.  To  minimize  it,  a  defocusing  lens 
could be helpful at the crossing point as well as negative 
curvature portions  of  the  equilibrium orbit  with  large 
values of β  function.
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ЛАЗЕРНОЕ ОХЛАЖДЕНИЕ В ЭЛЕКТРОННОМ НАКОПИТЕЛЬНОМ КОЛЬЦЕ И ЕГО ПРЕДЕЛЫ

А.Н. Лебедев
Исследована эволюция поперечного и продольного эмиттансов электронного пучка при взаимодействии 

его с лазерным излучением и последующей эмиссии жестких квантов. Рассчитаны и оптимизированы зави-
симости скорости охлаждения от структурных функций в точке взаимодействия, а также параметры элек-
тронного и лазерного пучков. Доказана инвариантность суммы декрементов. Найден минимальный фазовый 
объем, определяемый эффектом отдачи жестких квантов. Работа выполнена при поддержке гранта НАТО 
SfP-977982.

ЛАЗЕРНЕ ОХОЛОДЖЕННЯ В ЕЛЕКТРОННОМУ НАКОПИЧУВАЛЬНОМУ КІЛЬЦІ І ЙОГО МЕЖІ

А.М. Лебедєв
Розглянуто еволюцію синхротронного і бетатронного еміттанса електронного пучка під дією лазерного 

опромінення і наступного випромінювання твердих квантів. Знайдені і оптимізовані залежності швидкості 
охолодження  пучка  від  структурних  функцій  у  точці  зустрічі  електронного  і  фотонного  пучків  і  від 
параметрів  останніх.  Доведено  інваріантість  суми  декрементів.  Знайдено  мінімальний  фазовий  об’єм, 
обумовлений ефектом віддачі твердих квантів. Робота виконана за підтримкою гранту НАТО SfP-977982.
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