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Theoretical estimations of the ion core parameters inside a bending magnet with clearing electrodes at
it's ends are presented.
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INTRODUCTION

It is well known that positive ions produced from a forerion
residual gas and confined in beams of negatively charged I
particles limit performance of these beams. Effects of
the confined ions are similar to those caused by the beam
space charge but much larger in magnitude [1, 2] dueto >
relativistic effects. Hence, a small fraction of ion popu-
lation surviving when the clearing applied could cause a
significant effect on the circulating beam.

One of the most efficient and simple ways to reduce
the ion core density down to proper limits is the us- X
age of electrostatic electrodes providing transverse elec-
tric field that extracts ions from within the beam. This
technigues is mostly applied in storage rings—synchrotrdrig 1: Electron and ions trajectories. The center of mag-
light sources. Nevertheless the density of the ion coreet curvature is leftward.
in that beams has been estimated rather approximately.

In particular, it concerns the relation of the ion core pa-

rameters to the density of the residual gas in the vacuu ) . .
chamber of a machine act trajectories of a charged particle are known for only

Technical conditions restrict clearing electrodes fronft f_ew kind_s ?; ﬁelqb[?’d 5]_' hl':0:‘ more Coanfle;(] fi((ajqust the
covering more than a small fraction of the orbit IengthFra‘Jectory Is described within framework of the drift ap-

Thus the ion core density is strongly dependent on th%roxmat.lc.m [3]. . ) . .
longitudinal (along the beam orbit) motion of ions. This  SPEecific for the storage rings is that ions are being
motion is caused by so called drift of a charged particl@"oduced with initial velocities much less than the max-
in the crossed fields (e.g. the electrostatic field of th&num velocity gained in the potential well of the beam
beam and the magnetic field of a bending magnet). SpeRace chargei, < maxz, because depth of the well

cific for the storage rings is that ions are being produce@aches hundreds volts whereas the initial (thermal) ki-

with initial velocities much less than the maximum velocNetic energy of ions is abolt03 eV. Hence, as is ex-

ity gained in the potential well of the beam space Chargél_ected, the ion motion under the storage ring conditions

i, < maxi, because depth of the well reaches hundiffers significantly from the drift [3], where the advanc-
’ ing velocity is much smaller than that of gyration [4].

dreds volts whereas the initial (thermal) kinetic energy of! _ el adha
ions is abou®.03 eV. Hence, as is expected, the ion mo- Under considered conditions ion motion differs from
tion under the storage ring conditions differs significantlyh€ drift one (where the advancing velocity is much
from the drift [3], where the advancing velocity is muchSmaller than the orbital one) [6].
smaller than that of gyration [4]. Problem settings. Hamilton function?{, which de-

Present work is aimed at theoretical estimation of thecribes the motion of the nonrelativistic particle in the
ion core parameters inside a bending magnet with clegglectric and magnetic fields, is as follows [7]:
ing electrodes, installed at it's ends. )

ION TRAJECTORY H=o17 (5 - eA)

Technical conditions restrict clearing electrodes from
covering more than a small fraction of the orbit lengthwherel/ is the ion massgj— a canonical momenture;
Thus the ion core density is strongly dependent on the-the ion chargeA — a vector potential to the magnetic
longitudinal (along the beam orbit) velocity of ions. Thisfield; ¢ — a scalar potential to the electric field.

motion is caused by so called 'drift’ of a charged parti- The model geometry considered here is sketched in
cle in the crossed fields (e.g. the electrostatic field of thiig. 1.

Outer ion

am and magnetic field of a bending magnet). The ex-
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We accept simplifying assumptions keeping for the Wi, =ed! M,
electron storage rings. These are:

a) the curvature of the beam orbit is negligibly smallewvhere zo, % are the initial coordinate and velocity, re-
than that of an ion, so we consider the beam trajecrogpectively;u stands for or z.

being stright; As it follows from (5), the ion trajectory in the plane
b) the uniform magnetic field is supposed: orthogonal to the magnetic field, has the form:
Ay=Bz, 4, =A. =0 (2) r = m0+%(1—c059t)+%sinﬂt

with B being the magnetic field strength. w . Wi

¢) The electric field is uniform along the beam axj ( y Yo + Frz (1 = sin Q) + G cos Ut + V't
and even with respect to the plane:¢(z) = ¢(—z). @)

d) Depth of the potential well of the beam induced
electric field is significantly exceeds the ion initial kinetic

2 = 2 2 _ 2 .
energy, which is about the thermal energy of the neutral @ = “AJ/[J Wea 6;, w(1+D);
gas [4]. Q = g Yo~ o

This potential can then be decomposed into truncated D = “:jz” ;
to second order series arouad= g, z = 0 where an V. = go— ]“\’4—%.

ion produced:
Projection of the ion trajectory intor, y) plane rep-
¢(z,y,2) = ¢(,2) resents oscillations with the frequen@yand amplitudes

2
r — T
= G0t g+ EG 2 o= L (9 ).
22 e Q2 \Mm2 ")
+?¢lz,z +O( ;clgcw) ’ (3) w2 2
2 _ -2

(ly - m <W +y0> )
_ , _ 09 w _ 0’9 . . .
b0 = ¢ (20,0); ¢, = Iz i oL, = 92 . which reduces to an ‘elliptic’ cycloid for the off-axis

r=xg z=0

born ions (see [6]):
Substituting (2) and (3) in (1), we come to the follow-

ing expression to the Hamiltonian and the corresponding AZ;‘;“ <1;
canonical equations: V= _eQ .
MQ
2 2 - 2 v V|
L Pz (py —wMm) aw:‘T; ay =55 Tc=To— Ay -
o= 2M + 2M + 2M
. (z—m0)? , The applicability limits for the obtained expressions
+e {cbo + (@ = 20)¢s + 5 Pan are determined by the validity of the potential represen-
22 tations (3) within the ion oscillations. + a,, indicated
+3¢'Z'Z} ; (4) by the parameteD. This parameter equals to the ratio
of the amplitude to the initial position of an ion with zero
kinetic energy:
T = p./M
Pe = wpy — Mwz) —e[d), + (z — z0)¢).,] D=2,
gy = py/M —wz Zo
by i 0 u The casé) — oo relates to zero strength of the mag-
2= pz/(ﬁ” netic field (ions oscillate around the beam axig,= 0);
P = —€Q..2

the caseD = 0 represents zero electrostatic field, the
() ions are at rest. Fab > 1 the representation (3) is only
Herew = eB/M is the cyclotron (Larmour) fre- valid for the cylindrical beam with homogeneous density,

quency [5] of the ions in the magnetic field. The Hamil-¥” = const. The caseD < 0 indicates non periodic
tonian (4) can be read as sum of two parts: motion beyond our consideration. _
Analysis of ion motion. As seen in the equation of
H=H(x,y,pz,py) + H:(2,p: the trajectory (7), motion of ions in the plarie,y) is
Y Yy J y p Yy

. ) L . . the composition of the gyration with the frequerf¢yand
describing the independent motion in the vertical d'recédvancing along the—axis. Position of the centre af-

tion and in ¢y) plane. oscillation(z.) is:

lon trajectory. The projection of the ion trajectory '
into the z—axis represents a harmonic motion with the Q

‘electrostatic’ frequency. : Te = To + U
2o Sin West ; (6) For the po'FentiaI se'ries expanded aroupdve come

Wez to the advancing velocity” having the same form as for

2 = 2p COSWe,t +




well-known drift in crossed uniform electric and mag-wheren,, is the neutral gas densititi,cam iS the beam

netic fields [5]: density; 0 — the ionization cross section of the gas
, molecules (atoms).

vV = % : (8) Power of IE source, as follows from (12), is
0 = MQ o eph ) Sie(Zc,¥e) = Sm(xc) = congas(1+ D)

w w?

26 X /nbeam(ar(mc),z) dz. (13)
o, = — . z
e Oz | _

= Te Herez(z.) = z.(1 + D) .

Thus, the advancing (drift) velocity depends on the Because of independence of RHS in (11) and IE ve-
electric field strength at the centre of gyration only. Sdocity ony, the density of IE population is linear respect-
averaging the ion trajectory over the period of gyratiodnd to distance along the orbit from the clearing station
27/, we can involve into consideration virtual objects[8]:

— ion ellipses (IE) which velocity determined by the

electric field strength at their centres. niE = yngasoii(l + D)
Canonical form of the equations. The expression Ya ,
for the IE velocity (8) appears to be very important for o /nbeam [(m L > ’Z} d: . (14)
describing the ion core kinetics in dipole magnets. In z Mw?
fact, inthe coorqmate sy_stemturn_ed foran arbitrary_angle Assuming the beam density symmetrical
around the vertlcaIzQ axis, equations of the IE motion (beam(—Z) = mpeam(z)) and composing together
posseses the canonical form both upstream and downstream halves of the core, the
P 2(¢/B) density of ion core per unit of orbit lengthig reads:
c - Oye
{ jo = —2el®) © Nz = YngsoB(1+ D)
’ ed’ dz
where the radial position of 1E;., can be regarded as a X /nbeam [(m + M—w2> ,Z] ¢—, , (15)
canonical coordinate and the longitudinal positign— g e
as the conjugated canonical momentum. where integration done over the beam cross sectiois,
The Hamiltonian related to (9) the distance between adjacent clearing sets (the length of
the magnet along the beam orbit).
Hip = % (10) For the round beam model, expression (15) reduces
to:
being explicitly time independent is an invariant of the YbngasoB(1 + D)
motion. N = —
torilz?r:ifr?é%’ equicurves Gy represent the _IE trajec 1+ m
phase spacét.,y.). The canonical form x{log | —Y—2| —\/1—y2 3 ; (16)
of the equations of motion enables us to analyze the par- Y

ticle motion without involving solutions to the equations.
Small non—uniformity in the magnetic field can be treated
by means of the perturbation theory.

y*zx—b*(lJrD).

As it common for this sort of problem, the density of
DENSITY OF THE ION CORE IE_ra|ses t_o infinity when, - 0 It is caused py the
o ) ) ) ellipses with the centres laying in the beam axis posses
Kinetics of the ion core formation. Taking for the  zerg drift velocity and hence add infinite density to the
gruntthe canonical form of the IE motion and considering,re. Determination of the minimal offset from the beam
the stationary state of the ion core, we can present th@ntres, requires special consideration beyond the con-
discontinuity equation describe the dynamic assemble Qfdering model.
IEs (9) as the following: Determination of z, and core density distribution.
_ For the model the only mechanism of removing ions out
{nim (e, ye), Hin} = Sts(we, ye) (D) of the beam is their drift onto the clearing electrodes.
sity of IEs; the RHS ternsig («., y) stands for power model suggestion of small neutralization is violated in
of the IE source, e.g. number of IEs in unit space ceffis region. Hence, we suppose that in this region ions
produced per unit time interval. Here, according to (6)¢S¢ape from within the beam in-direction (along mag-

due to independence of motion in this direction. [9] are kept. For a typical pressure of the residual gas the
Power of IE source can be evaluate as follows. Nunfl€e space model yields full neutralization. So, the empty
ber of ionsn;,, producing a{(z, y) is beam model restriction violates in the near—to—axis re-
gion.
dnion e com (12) We suggest to establish the valuexgf phenomeno-
dr et heam logically based upon the following considerations. Let at



z. = z, the density of the ion core reaches that of th@f oscillators with the uniform initial distribution of co-

beam (full neutralization) at some coordinate Thus, ordinates and the thermal distribution of momenta.

the phylosophy of determinatian is as follows. The IE Consider the ensemble of particles oscillating with the

densitynig (z.,y) (14) corresponds to a certain core densame frequency around the coordinate origif € 0),

sity distributionnio, (z,y, z; ). We require the maxi- possessed the uniform initial coordinate distribution and

mal core density at the magnet end (entrance to a clearietge thermal momentum distribution. Let us suggest for

set:y = Y’) equal to that of the beam: the sake of simplicity the momentum distribution being
maxvellian up to amplitude; andé(p) above that:

Ty =>maXTLi0n(1',Y,Z;1'*) :nbeam(maz) . (17)
. . . . . b:+4/b2—22 i
Besides (17), we will also use in calculations an inte- ) log Y +3 a2z
gral criterium: _ =
fv(Z) 7Tb 2 2
> log (V=2 ) Zm < 2
Ty = max/ Nion (2, Y, 2; 2, )dz z ’ m
t (21)
= / Nibeam (T, 2)dz . (18)
0
As is evident, both criteria (17) and (18) base on max f,(z) = f,(0) = = (log (E—T) + g) ;
knowledge of the core density distribution corresponding o T
to the IE density (14). There exists one more reason to 0T = 3\ Pnbeam

obtain the core density: Some of problems in beam dy-

namics (e.g., nonlinear betatron motion) require explicivherek is the Bolzmann constarif; is gas temperature.

charge distribution for their evaluation or simulation. Thus, accounting for initial temperature eliminates di-
Whereas ion motion is independent along the magngergence in density at = 0.

lines and in a plane perpendicular to them, we can sepa- We evaluate the transverse density distribution in the

rate these two projections. First we will evaluate the verfollowing way. The essembles with vertical density dis-

tical density distribution of ions oscillating in a parabolictribution (21) and density of centres (16) oscillate in the

potential well. The density contributed to the ensemblBorizontal plane. So, the general density distribution can

by a harmonic oscillator can read as: be valuated by joining of the elemental density contribut-
ing by single oscillator with their density distribution (16)
fu;ue,ay) = and (21). The essemble of oscillators with the same ini-

~ Hlu— (uc — ay)] — Hlu — (uc + ay)] (19) tial position, possesing thermal initial velocities, has the
- T m ’ density:

whereH(u) is the Heaviside step functiom, anda. is Q (a3 —2?) Q2

the centre coordinate and the amplitude of oscillations, fosc(@0, #) = V2rs b 252

respectively.

Vertical core shape.For a uniform beam and vertical x[1=v(ag, )] , (22)
oscillation of initially rested ions ¢ = z, u. = 0, and orf (ag—r2)Q2 | o <a
amplitude distributiony(a.) - b, = H(a.) —H(a, —b.)) v(ag,z) = 257 B
the (normalized to unity) density distribution function is 0 z? > af

b. .
: da 1 1++4/1-( with
9(2)2/ ——= = —log————; (20)
Zmax V a? — 22 ™ C

erf(u)

2

2 [exp(—t?)dt,

M

Zmax = Max(z, z«)

with ¢ = z/b.. Joining (22) and (2_1) vv_ithb_z = Vb — :n2 the re-
We have arrived at divergencezat 0 due to Dirac’s stqred transvers_e density distribution of the ion core cap-

§ contribution from a zero—amplitude oscillator. This di-tUring by the uniform beam reads:

vergence can be eliminated accounting for initial velocity

(temperature) of the ions. We take into acount the finite Nion (2, 2) = Kden/wmw,t)) dt,

temperature of the producing ions in the following way. t t

As is obvious, the initial velocity changes the core distri- (23)

bution significantly just around the median plane< 0),

where the core density reaches its maximal value. Limits

of influence are at depth of the beam potential well about log VR o o p
the room temperature (0.03 eV). So, the problem of eval- zity/zi-22 2
- : : - o Vi(z(t),2) =
uating the maximal core desity at this step reduces into —
obtaining the density distribution functions for ensemble log Zat Zz*—z : 2>



25

4.7

20F ~— Core density
4.6 4

4.5 o

Rel. density
-
(6]

/ Beam density

4.4 - 1.0

neutralization, 10 *

4.3 4 05 F

4.2

00 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

T T T T T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25

x/la
beam current, A

' o Fig 3: The ion core transverse density shape
Fig 2: Dependence of the neutralization factor upon the g y P

beam current

5.6 4
z«(t) = /1—1t3(1+ D)2,
F(u) = Jzexp(u?) (1 - erf(u)),
524
Pla,t) = VT o
22 = kT = 501
i 7 Npremc2’ 5
1.2 = —A —k g 487
i (D+1) 1, B2 =
Kgen = y ZiB (D4 )nga. g 461
daen Te ) g
wherer, ;, is the electron (proton) classical radius;is 7
the mass number; all the coordinates are dimensionless, “*]
normalized on the beam raditis 40 S LS —
COMPUTATION OF THE ION CORE DENSITY B, Tesla

To study the ion core density responce upon varia-
tion of some parameters, we _wrote a Comp“tef code thfi\tg 4: Dependence of the neutralization factor upon the
solves numerically the equations (23) with the both C”aipole field
teria (17) and (18) [8]. Calculating procedure is as fol-
lows. By variation ofz,,, the maximal relative ion density
(17) atz = 0 or optionally the averaged overdensity is REFERENCES
equalized to unity. Obtained by this procedure the value
of z,, is provided to calculate the neutralization facior
(16) and density distribution (23).

The results of computing are as follows:

1. Y. Baconnier, A. Poncet, and P.F. Tavanigsutral-
ization of accelerator beams by ionization of the residual
gas.CAS 1992, CERN 94-01, pp.525-564, 1994.

. 2. E. Bulyak. lon driven effects in the intense elec-
a) For the typical beam parameters & 0.05cm, tron beams circulating in storage ring®roc. PAC and

of Nirogen) on clearing Keeps i netiaization factolCHEA (Dallas TX, 18955 3226-3228, 1995
9 9 P 3. B. Lehnert.Dynamics of charged particldsorth-

below0.004 (Fig. 2).
b) The transverse density distribution of ions is essenHOHand’ 1964,

tially nonlinear, the main part of ions is confined in thego-g;lAiglz%ncet.lon trapping and clearing-ERN/MT

near—to-axis region (Fig. 3). . 5. J. G. Linhart. Plasma physics. North-Holland,
c) The density of ions increases slightly when th(a1960

beam current is built up, the neutralization factor de- 6 .A Poncetlon clearing in EPAPS/ML/Note 83-1

creases as depicted in Fig. 2. R.N -1983 '
d) The core density decreases when the magnetic fie? ! )

7. G. GuignardA general treatment of resonances in
acceleratorsCERN 78-11, 1978.
CONCLUSION 8. E. Bulyak. lon core parameters in the bending

. _— agnets of electron storage ring23toc. PAC and ICHEA
Clearing electrodes are capable to reduce significantyy .-« 1 1995)5 pp.3223-3225, 1995

the ion core density. Remaining ions occupy the near—to— 9. E. Bulyak. Kinetics of the ion core formation in

axis region of the beam. Therefore additional focusing Oélectron storage ringsVANT ser. TFI1 (27)pp.61-62
the beam particles provided by the ion core is sufficiently gg¢ (In Russian) ' ' '

nonlinear. Density of ion population under the conditions
cosidered is almost independent of the beam current.

strength is increased, Fig. 4.
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