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Results of integration of the Lorentz-Dirac equation for electron motion in the field of intensive light wave are 

given in this work. Diagrams and parameters, which characterize the periodic motion of a relativistic electron, are 
shown. Formulas of the spectral-angular distribution of the electromagnetic field irradiated by a relativistic electron, 
moving towards electromagnetic wave, were obtained.
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1. In [1] the Dirac-Lorentz equation for motion of a 
relativistic  electron  in  the  field  of  travelling  linearly 
polarized  plane  light  wave  was  integrated.  The 
bremsstrahlung force produced by the electron radiation 
was  taking  into  account.  It  was  shown,  that  the 
bremsstrahlung  force  results  in  an  appearance  of 
decrement.  However,  under  some  conditions  the 
periodic motion of a radiating electron is possible.

In  the  present  work  approximate  conditions  of  the 
existence of periodic motion of a radiating electron are 
analyzed.  Diagrams of  electron  periodic  motion  were 
calculated  without  taking  into  account  the  radiation. 
Formulas  of  spectral-angular  distribution  of 
electromagnetic  radiation  intensity  for  an  electron, 
which  is  moving  periodically  in  a  wave  field,  were 
obtained.

2. The Dirac-Lorentz equation of electron motion in 
the electromagnetic theory [2] can be written as 
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is  the  rest  mass  of  an 

electron,  c  is  the  light  velocity,  v  is the vector  of 

electron  velocity,  FL is  the  Lorentz  force,  FR is  the 
bremsstrahlung force.

It could be shown [1] that when FR = 0 in the field of 
plane electromagnetic wave the integral of motion takes 
place:
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where cxх v=β , vx is the velocity projection onto the 
x-axes, "0" designates a value at the initial time instant.

By proceeding to new variable “S” (instead of “t”) 
Eq. (1) could be reduced to the form:
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where  2
0

2 cmere =  is the radius of electron,  νλ c=  
is  the  light  wavelength,  Bm00 =µ ,  k  and i are  unit 
vectors of the z-axes and x-axes, respectively.
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where  n is the normal to the wave front,  r is a radius-
vector,  δ is the phase initial value.  E, H are vectors of 
electric and magnetic fields, respectively.
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3. It  could  be  shown  that  Eq. (3)  under  some 
conditions  has  a  periodic  solution.  Approximate 
conditions for electron periodic motion without taking 
into account bremsstrahlung force (FR ≡0) are reduced to 
following expressions
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where α is the angle between initial directions of  v and 
i.

Eq. (6) is the condition of electron periodic motion 
with  the  period  ν--1  on  z.  Eq. (7)  is  the  condition  of 
periodicity  on  time.  It  was  obtained  from  the 
requirement that, when electron passed along x-axis the 
distance equal to 1

1
−νa , it came to the same wave phase. 

The numerical calculations have shown, that Eq. (7) is 
the result  of  Eq. (6).  To obtain the spectral  -  angular 
distribution of radiation intensity of electron moving in 
the xz plane, we calculate electric field components in 
the wave zone [2]:
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yzx εεε ,,  are the  projections of a radiating vector of 
electrical component.
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R  is  the  distance  from  an  electron  to  the  point  of 
observation, ϕ is the angle between unit vector of x-axis 
i, and vector, directed from the coordinate origin to the 

point of observation. 
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electron motion on the trajectory, Tw π2= .
Using the given formulas, we can obtain fundamental 

frequencies of the electromagnetic field radiation in the 
point of observation:
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l is the number of radiation harmonic.
The  formula  for  l  (whole  number)  puts  a 

requirement on a relation between parameters of wave 
and particle, and ensures a linear spectrum of radiation, 
typical under a periodic electron motion on time.

During the calculation Eq. (12) the small oscillations 
x and z were not taken into account. Small x and z will 
give  higher  radiation  harmonics  but  very  small  in 
comparison with fundamental harmonics of radiation.

The  known  formula  of  maximum  frequency  of 
Compton scattering for εz follows from Eq. (12):
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when  2
0,, cmW=== γπϕπα ,  W is  the  electron 

energy.
The formula (13) is obtained at limitation on intensity 

of a plane wave Ea:
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For  example,  at  W = 50 MeV,   = 3*1014 Hz  Ea  

should be less than magnitude 8102 ∗π  V/m.

From these  formulas  the  important  result  follows: 
with  increasing  of  the  incident  wave  intensity  Ea the 
frequency of electron radiation decreases and tends to 
frequency of the incident wave at very large values. It is 
connected with decreasing of velocity of electron, which 
oscillates in a wave field towards the observer. So, at 
a1=0 the electron stops to move along the x-axis and 
Doppler  effect  disappears.  The  electron reradiates  the 
incident wave.

Figures 1-3 show the trajectories of an electron with 
energy  50  MeV in  the  field  of  a  travelling  wave  for 
typical cases: ν = 3*1014 Hz, ϕ = π. 1) Ea = 108 V/m, α=
π-3*10-7, δ=1,3; f1=1,2*1019 Hz; 2) Ea = 5*1014 V/m, α=
π-10-2,  δ=0,0064,  f1=9,93*1014 Hz;  3)  Ea  =  9,1*1014 

V/m, α=π-10-2, δ=0,0035, f1=3*1014 Hz. 
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