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The technique of constructing approximate solutions to heat conduction problems of media is presented. The cal-
culation is based on the structures of solutions constructed with the help of the left, normalized-to-the-first-order 
equations of region boundaries and their characteristic parts. The structures of solutions contain uncertain compo-
nents, and whatever their choice may be, the boundary conditions and the conditions of medium conjugation are ful-
filled exactly. The arbitrary choice of uncertain components is used to satisfy the basic differential equation.

PACS: 61.20.-Ja.

The  thermal  power  of  the  reactor  core  is  limited, 
from the thermal viewpoint, by the maximal tempera-
ture of fuel and fuel element cladding. If the fuel ele-
ments have a finned, intricately-shaped surface,  a  gas 
gap between the fuel and the cladding, or a multi-layer 
structure, the existing methods of solving boundary-val-
ue problems give no way of taking into account these 
limitations  [1].  This  paper  describes  the procedure  of 
solving boundary-value problems with mixed boundary 
conditions and a complicated geometrical shape of fuel 
elements.

Mathematically, the problem is presented in terms of 
a boundary-value problem:
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where  F(x,y)=Q/V0 -  specific  power of heat  evolution 
(wt/m3,  Q  – heat evolution power),  V0=πR0L=πd2L/4  – 
volume of fuel element, s – number of areas, cΤ  – am-
bient temperature.

The proposed approach of constructing approximate 
solutions  of  boundary-value  problems  combines  the 
possibilities of the  R–function method [2] to take into 
account the complicated character of boundary condi-
tions  (2)  –  (4)  for  intricately-shaped  fuel  elements 
(Figs. 1, 2) and the properties of exact solutions to allow 
for the effect of concentrated fuel elements.

Fig. 1. Model of a fin-shaped source of an elliptic  
type

Fig. 2. Model of the technological cartridge with a 
fin-shaped source of an elliptic type

According to the variation principle [3], the bound-
ary-value problem (1) – (4) is equivalent to the variation 
problem of finding the function θs(x,y) that leads to the 
minimum of the following functional on the set D(A):
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where θs  =Ts–f0 is a new unknown function;  f0 is a cer-
tain  function satisfying the boundary conditions  (2)  – 
(4); s is the region of the i – the boundary.

The functions θs(x,y) (s=0,1,2), minimizing the func-
tional (5), can be represented by structural formulas [4] 
as
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The  equations  ωs(х,у)=0  are  the  normalized  equa-
tions of boundaries sΓ  and satisfy the following condi-
tions [2]:

1) ωs(х,у)∈С2(Ωs),
2) ωs(х,у)>0,  ∀(х,у)∈Ωs,
3) ωs(х,у)=0,  ∀(х,у)∈Гs,

4) 1=
ν∂
ω∂

Γ s
s

,

where νs is the inward normal of the contour ,sΓ  bound-
ing the region Ωs.

For  the  problem  under  consideration  (Fig. 1)  the 
equations ωs(х,у) (s=0,1,2) have the following form
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s

sss
R

yyxxR
2

)()( 222 −+−−
,

where Rs is the radius of the region Ωs, and хs  is its cen-
ter.

For the finned region  Ω1 the equation is written as 
follows:
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n is the number of fins.
At а=0, the center of the circle forming the fin, will 

lie on the axis 0Х. If а=0, then the centers of circles will 
be on the circle of radius  R1, i.e., on the boundary Г1. 
The radius r can be used to control the size of fins and 
consequently their number.

Ds is the differential operator of the form
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which  follow  from  conditions  1),  4)  of  equations  ω
s(х,у).

We now show that the structural formulas (6) – (8) 
exactly satisfy the boundary conditions (2) – (4):
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The uncertain element Ф0(х,у) of structural formulas 
(6) – (8) can be presented by the expansion [2], [4]

Ф0(х,у)= ∑ ϕ
=
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where ϕi(x,y) stands for the functions of a linearly–inde-
pendent system (Chebyshev, Legendre, Hermite polyno-
mials, etc. [5]), ic  denotes the unknown constants.

Substituting (9) into (6) – (8), we obtain
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where  n  is the number of coordinate functions defined 
by the formula n = (к+1)×(к+2)/2 (к being the power of 
polynomial),  ),()( yxs

iΨ  are the elements of basis sys-
tems of functions of types:
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The  unknown constants  сi(i=1,…,n)  are  calculated 
from the minimum condition of functional (5)

∂I(θs)/∂cj = 0,  i≤ j ≤ n.
This requirement is equivalent to a set of linear alge-

braic equations

∑ =
=

n

i
iij c

1
A ,,,2,1,

1
njB

n

i
j∑ =

=


where ijA  and jB  look like

2

( ) ( )( ) ( )2

0

(2 (2)
2 2

 

d , 0, 1, 2,
s

s ss s
j ji i

ij s
s

i j

d
x x y y

s

= Ω

Γ

 ∂ Ψ ∂ Ψ∂ Ψ ∂ ΨΑ = + Ω + ∂ ∂ ∂ ∂  
+ α Ψ Ψ Γ =

∑ ∫ ∫

∫
∫ ∫ ΩΨ−=Β

Ω 0

.0
)0( dF ij

The integration over the regions  Ωs and the bound-
ary cΓ  was performed using the Gauss quadrature for-
mulas [6].

The  approximate  analytical  solution of  the bound-
ary-value problem (1) – (4), obtained with the help of 
the proposed procedure, is written down as

),,(),(),( )(
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s

s θ+ϕ=Τ (11)

where  )(
0
sϕ  are the temperature fields  defined by the 

boundary conditions.
Thus, the method is proposed for solving the bound-

ary-value  problem  with  complicated  boundary  condi-
tions for conjugation of nonuniform media, and the con-
ditions of heat exchange between the surface of the sys-
tem and the environment. Structures from (6) to (8), de-
veloped  for  each  constituent  area,  exactly  satisfy  the 
conjugation  conditions  (2)  –  (4)  at  the  boundaries 

., 1+ΓΓ ss  They have the properties of the passage to the 
limit with decreasing distances between the boundaries 
of contacting media. This is of importance, because with 
fuel swelling  Ω0  in nuclear fuel elements the clearance 
between  the  fuel  and  cladding  is  reduced,  and  the 
boundaries Г0  and Г1  are coming together almost in line 
[7].
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