DEPENDENCE OF THE γ^3 He \rightarrow pd CROSS SECTIONS ON THE NUCLEAR WAVE FUNCTIONS IN THE GIANT RESONANCE REGION

V.V. Kotlyar

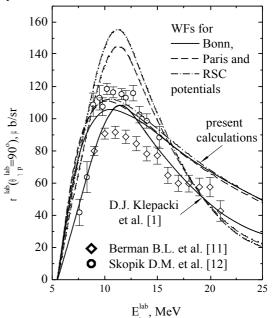
National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine

The differential cross section and the asymmetry coefficient for the two-body ³He break up by linearly polarized photons are calculated with the wave functions for Reid soft core, Paris and Bonn potentials. $PACS: 21.45 \pm y.25.10 \pm z.25.20 + z.27.10 \pm b$

PACS: 21.45.+v, 25.10.+s, 25.20.-x, 27.10.+h.

The differential cross section for the reaction \square^{3} He \square pd at photon energies E_{\square} <25 MeV was shown [1] to depend substantially on choice of the nuclear wave functions (WFs). The calculations were performed in momentum space with the Faddeev WFs for 3N bound state for Reid soft core (RSC), Paris and Bonn potentials. The Siegert theorem was applied in [1] to take into consideration a part of the interaction current effects in the electric multipoles.

Explicitly the meson exchange currents (MEC) were treated in [2,3] where parametrization [4] of the ³He WF for RSC potential was used. It was demonstrated [2,3] that the MEC contributions sizably increase the values of the cross section reducing discrepancies between the results of the calculations and the experimental data.


Role of the interaction currents and rescattering in the pd system was studied [5-9] in the proton-deuteron radiative capture. Area of energies examined in [5-9] corresponds to $E_{\gamma}^{lab} \le 139.1$ MeV in the ³He photodisintegration. Results [7-9] allow one to single out a kinematic region where the effects of final state interaction (FSI) do not appear to be crucial for the cross section of \square ³He \square pd and give an opportunity to scrutinize manifestation of the P- and D-components of the 3N bound state WF.

Aim of this paper is to carry on investigation [3] and to study dependence of the energy and angular distributions of the cross section and the beam asymmetry on the ³He WFs using precise numerical solutions of the Faddeev equations obtained in Ref. [10].

The observables are computed with the nuclear current including contributions from convection and spin currents, the two-body currents generated by pion exchange (π EC). The Riska model is taken for the latter. The π NN form factors in the operators of MEC are chosen in the monopole form with the cut-off parameter Λ_{π} =1.2 GeV. The reaction amplitudes are calculated in the framework of Refs. [2,3], where details regarding the techniques can be found.

In Fig. 1 the differential cross sections obtained with the Hannover-Helsinki WF [4] for RSC potential and the Bochum-Cracow WFs [10] for Bonn and Paris potentials are compared with the results of Ref. [1]. According to the present calculations there is only a rather moderate dependence of the cross section on the nuclear WFs that corresponds to the conclusions of Refs. [7-9] and contrasts with inferences of Ref.[1]. The angular distributions for Bonn and Paris potentials have been analyzed to study the variations of the cross section in detail. The different sets N_{α} =2, 5, 10, 18, 26, 34 of the partial wave components of the ³He WFs have been considered.

The contributions of the S-waves correspond to the set N_{α} =2. D-waves are included in N_{α} =5. The set N_{α} =10 consists of S-, P- and D-components with the total angular momentum in the two-body subsystem J=0 and 1. Partial waves with J≤2 are involved in the case N_{α} =18. The components of the ³He WF with J≤3(4) are taken into account in N_{α} =26(34). It turns out that no significant potential dependence appears in all the cases analyzed.

Influence of the ³He WF components with orbital angular momenta 2...5 on angular distributions of the cross section and the beam asymmetry is demonstrated in Figs. 2 and 3.

The calculations in the plane wave approximation overestimate the data at forward and backward angles. Enhancement of the cross section at $\theta_{\gamma p}^{\text{lab}} \exists 30^{\circ}$ and $\theta_{\gamma p}^{\text{lab}} \exists 150^{\circ}$ rides on contributions of spin current and πEC . As it follows from comparison with the results of experiments [13] and theoretical investigations [7-9],

the effects of the FSI cannot be neglected under these kinematic conditions. The P- and D-states in the ³He WF influence the cross section just in a vicinity of its maximum at E_0 =9-16 MeV where nonorthogonality of the initial and final state WFs does not play a decisive role at least for this observable.

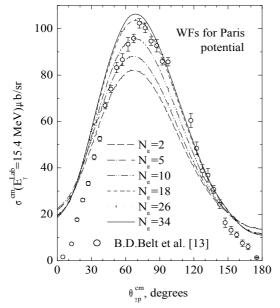
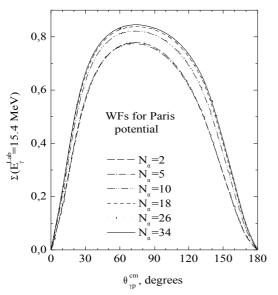



Fig. 2. Angular distribution of the differential cross section for $\gamma^{3}He \rightarrow pd$.

Fig. 3. Angular dependence of the asymmetry coefficient for γ^{-3} He \rightarrow pd with linearly polarized photons

Being calculated with the convection current, the asymmetry coefficient Σ >1 at 30° [] $\theta_{\gamma p}^{lab}$ [] 140°. Inclusion of spin current or/and πEC decreases Σ values and changes the shape of the angular distribution reducing its width.

As seen from Fig. 3, the asymmetry Σ is affected by the P-wave components of the 3N WF (cf. curves for N_a=5 and 10). This observation does not seem to be very surprising in view of the fact that polarization observables in Nd elastic scattering [14] and pd radiative capture [15,16] were found to be remarkably sensitive to the NN interaction in states with L=1.

Nevertheless, before one can draw definite conclusions whether the reaction γ ³He \rightarrow pd is of interest for studying properties of the P-states in ³He WF, the role of the FSI effects in masking the sensitivity of the asymmetry coefficient to the components of the WF has to be investigated.

The author is grateful to H. Kamada, W. Glöckle, J. Golak, H. Witała for the data on the ³He WFs obtained with Paris and Bonn potentials and would like to thank J. Jourdan for fruitful discussions.

REFERENCES

- 1. D.J. Klepacki et al. Two-body photodisintegration of ³H and ³He near the giant resonance (I). Plane-wave approximation // *Nucl. Phys. A.* 1992, v. 550, №1, p. 53-88.
- V.V. Kotlyar, A.V. Shebeko. Conservation of Nuclear Electromagnetic Current and Calculation of ³He(γ ,p)d cross sections // Sov. J. Nucl. Phys. 1987, v. 45, №4, p. 610-615.
- V.V. Kotlyar, A.V. Shebeko. Mechanisms of the □ ³He□pd reaction in the giant resonance region // Sov. J. Nucl. Phys. 1991, v. 54, №3, p. 423-425.
- Ch. Hajduk et al. A convenient analytical form for the triton wave function // Nucl. Phys. A. 1980, v. A337, №1, p.13-22.
- J. Jourdan et al. *p d* radiative capture and the ³He D-state // Nucl. Phys. A. 1986, v. 453, №2, p. 220-240.
- S. Ishikawa and T. Sasakawa. p+ d→ ³H+ γ reaction with realistic three-nucleon wave functions // *Phys. Rev. C.* 1992, v 45, №4, p. R1428-R1431.
- 7. H. Anklin et al. Tensor analyzing power A_{yy} of p d radiative capture // Nucl. Phys., A. 1998, v. 636, №2, p. 189-206.
- J. Golak et al. Faddeev Calculations of Proton-Deuteron Radiative Capture with Exchange Currents // Phys. Rev. C. 2000, v. 62, №5, article 054005, 16p.
- H. Kamada et al. Faddeev calculations of Proton-Deuteron Radiative Capture with p- and r-Meson Exchange Currents of the Argonne Potentials // Nucl. Phys. A. 2001, v. 684, № 3-4, p. 618-622.
- W. Glöckle et al. The Three-Nucleon Continuum: Achievements, Challenges and Applications // Phys. Rep. 1996, v. 274, №.3-4, p. 107-286.
- 11. B.L. Berman et al. Photodisintegration of ³He // *Phys. Rev. C.* 1964, v. 133, №1, p. B117-B129.
- D.M. Skopik et al. ²He(p,□)³He reaction using polarized and unpolarized protons // *Phys. Rev. C.* 1979, v. 19, №3, p. 601-609.
- B.D. Belt et al. Radiative capture of deuterons by protons // Phys. Rev. Lett. 1970, v 24, №20, p. 1120-1123.
- 14. H. Witała et al. Nucleon deuteron polarization observables in Nd elastic scattering at 6.7 MeV c.m. energy: Predictions of meson based NN interactions // Nucl. Phys. A. 1989, v. 496, №.2, p. 446-461.

- 15. G.J. Schmid et al. T₂₀ measurements for ¹H(d, □)³He and the P-wave component of the nucleon-nucleon force // Phys. Rev. C. 1996, v. 53, №1, p. 35-40.
- 16. J. Golak and H. Witała. Sensitivity of the Low-Energy p-d Capture Observables to the ³P_j Nucleon-Nucleon Force Components // Few-Body Systems. 2000, v. 28, №.3-4, p. 231-240.