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1. INTRODUCTION

Control of plasma edge behaviour is the main purpose
of the Dynamic Ergodic Divertor (DED) project of
TEXTOR [1]. The DED helical coils create a specific
topology of magnetic field at the plasma edge, where
external rotating helical perturbations are resonant on the
rational magnetic surfaces.

In cylindrical model the penetration of external
perturbations was investigated in [2]. The toroidal
modelling (without consideration of the plasma response)
shows a more strong perturbation decrease with the
distance from DED coils as compared with the cylindrical
model (see, e.g., [1]). In the present paper for an adequate
comparison with DED experiments the theoretical
treatment of the DED operation is investigated in the
toroidal geometry on the basis of two-fluid MHD
equations with the plasma response being taken into
account.

2. BASIC EQUATIONS

We start from the two-fluid MHD equations for
continuity, momentum and energy conservation for
plasma ions and electrons and the Maxwell’s equations.
The electron-ion collision frequency is higher than the
frequency of external perturbation. The electron inertia
and electron stress tensor are neglected. Then by the usual
way we take the plasma equation of motion

p(%—‘;+(V-V)Vj:—Vp—V~n,- +[IxB], (1)

and the generalized Ohm’s law (e > 0)
Jy/o+I. /oy
=E+[VxB]+Vp,/en, —[Ix B]/ene + (0.71/e)VH7; ,

where n, and p are the plasma and plasma mass

@

densities, p = p, + p; is the total pressure, J is the total

current density,

is the ion gyroviscosity tensor, o
and o, are the parallel and perpendicular (with respect to

the magnetic field B) conductivities, respectively. The
parallel electron heatconductivity coefficient is assumed
to be a large value. Hence, in our approximation (7, is

the electron temperature)
B-VT,=0. 3)

We use the approximation of an incompressible
plasma motion V-V~ =0. We consider a current
carrying toroidal plasma with nested equilibrium circular
magnetic surfaces (p, is the radius of the magnetic
surfaces, w, is the poloidal angle in the cross-section
{ =const, ¢ 1is the toroidal angle). Each magnetic
surface is shifted with respect to the magnetic axis (& is

the shift, R is the radius of the magnetic axis). The
equilibrium toroidal contravariant component of the

magnetic field, Bg = <D’/ (27[& ), is large with respect to
the poloidal one, BY = ;(’/ (27z\/§), @' and y' are the

radial derivatives of toroidal and poloidal fluxes,
respectively.

By a usual manner (see, e.g., [3]) on each magnetic
equilibrium surface we introduce the straight magnetic
field line coordinate system (a,8,¢ )

po=a, w,=0+a)sin@, 4)
Ma)=-¢'(a)-a/R, (5)
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Equations (4) are valid for a low plasma pressure p,(a)

£'a)

and a small toroidicity a/R when it is possible to neglect
the magnetic surfaces deformation. The well-known
expressions for metric tensor are used [3].

Assuming periodicity in both 6 and ¢, we take

contravariant components of perturbations in the form

x? (a,&,(,t)z ZX,‘,’;,? (a)exp[i(m&—n§ —a)t)], (7
m,n

where @ is the frequency of the external perturbation.
The toroidal symmetry of the TEXTOR-DED system
gives n=(2k+Dn,y, (ny =4,k=0,1,...). Because of the
strong radial decay of the £>1 harmonics, the
perturbations can be approximated in Eq. (7) and below
by the toroidal Fourier terms with n=n; (see [4]). For

contravariant components of plasma velocity and

magnetic field perturbations, V¢ and B%’, the system

of equations is obtained in the linear approximation.
These equations take into account the resistive effects and
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toroidal modes coupling. Poloidal mode numbers m are

i~“m 2
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Here
1 r ’
F,(a)=——(my'(a)—n®'(a)), (10)
2maR
o, =o-mV{ +nV§ , 5 =1/ Juo@. (1)

The value of F, (a) is equal to zero inside the

plasma, when g(a,,,)=m/n (q(a)=®'/ " is the safety

factor).
Equation (9) contains only oscillating parts of the
metric tensor: g, =2&'cos@, g, =alad’ —&')sin@,

\/Ez 2a*cos@, gj =0dgy/da,
g =0gy /00, Eq. (9) is written in the compact form:
( f )m is the m-th poloidal harmonic of f, the variables
ye? and B* are the total radial and poloidal

perturbations of the magnetic field and plasma velocity,
respectively. In Egs. (8), (9) the small terms that are

g»n = 2a*Acos@,

proportional to ¥,; and B are omitted. We included the
equilibrium poloidal plasma rotation with the velocity
VOH due to existence of an equilibrium radial electric

field, here we also took into account the ion diamagnetic
drift velocity and the equilibrium toroidal plasma rotation

with a homogeneous velocity Vog. When we neglect

toroidicity, we use physical components of the vectors.
For w; and @' we have in this case
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defined by the DED antenna spectrum.
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The equilibrium current density is included in Eq. (9).
We assume that equilibrium quantities are slowly varying.
Recall that the ion gyroviscosity tensor @; compensates

the drift diamagnetic effect [3].

3. RESULTS AND DISCUSSION

The first lines of Egs. (8), (9) in coordinates (a,8)
formally coincide with Egs. (4), (7) of cylindrical model
[2]. Recall that the solutions of cylindrical equations are
shown for TEXTOR —-DED in Fig.3 of Ref. [2]. In Eq. (9)
, gxB*Y and
their derivatives describe the poloidal modes coupling due
to plasma toroidicity in inertial, convective and
ponderomotive terms in Eq. (1). In coordinates ( p,, @, )

the solutions of Egs. (8), (9) take the form

(B2 (9o, @0, £,2), V70 (g, @0,¢1))

N B, (Po)
~ Z,,:‘{V o, )}Jm*_

m

the terms that are proportional to g, ¥ Y

(14

o (| 2 ) expli(m* 0y —ny —wt)].

Here J,,«_,,(m | A1) is the Bessel function. Mode numbers
m* and n, are defined by the TEXTOR-DED antenna

spectrum g , this having been investigated in Ref. [4]
(m¢=20, ny=4)
sin(m*—m)6
) oc ( 0)C , 0. =7mny/my. (15)
(m*—my)

The spectrum of perturbations is found from the boundary
condition at Py = P> Peoi 18 the radial position of

DED coils. This spectrum is shown in Figure for
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Bpo =1 and the parabolic profile of the equilibrium
current density (compare with [1,4]), S, is the ratio of

the plasma pressure to the pressure of the poloidal
magnetic field.

The DED antenna produces the whole spectrum of m,
but the m=12 mode term in Eq.(14) is of specific interest
(q(a,,s) =12/4 is the base mode resonance) [1,4]

By (po) Jpein (12 A1), m*~20. (16)

Due to the small parameter J,,«_,, (m | A |) ~0.06 — 0.2 for
B por~ 0.5 — 1 the influence of this resonant term strongly

drops in comparison with the cylindrical case in Fig.3 of
Ref. [2] (compare with [1,4]). Note, that the value of
I (m | A |) strongly depends on the value of £, and

the equilibrium current density profile. Note, that the
poloidal driven force drops as J 2t —m (m | A |).
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Spectrum of perturbations in Eq. (14)

It was shown in Refs. [1,4], that DED magnetic
perturbations (without plasma response being taken into
account) decrease with the distance from the DED coils as

B oo (rfry )" (17)

Our consideration (see Eq.(16)) shows a more
complicated behavior of the main resonant term compared
with Eq. (17). Moreover, the behavior of the resonant
term in our case (Eq.(16)) is not so predictable in the
experiment in comparison with Eq.(17).

Estimates show, that for typical TEXTOR-DED
parameters the resistive term in Eq. (8) is only two or
three times larger than the toroidal coupling term. For

m? >>1 the last term in Eq. (8) may be the same order of
magnitude as the toroidal coupling terms.

4. CONCLUSIONS

The equations that describe the penetration of external
helical magnetic perturbations have been derived for the
toroidal geometry in the first-order of a/R approximation.
The role of toroidal effects is estimated.

It is shown that as a first approximation it is possible
to use the results of cylindrical model [2] with the small
factor J,,«_, (m | A |) being taken into account. This factor

strongly reduces the effect of DED coil field.
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TOPOUJAJIBHOE PACCMOTPEHHUE OTKJIMKA IIJTA3MbI HA IPOHUMKHOBEHMWE BHEIIHEI'O
HN3KOYACTOTHOI'O BUHTOBOI'O BOSMYIIEHHS B KPAEBYIO IIVIABMY TOKAMAKA

HUM. Ilanukpamos, A.Al. Omenvuenko, B.B. Onvuwanckuii

Jus amexkBaTtHOrO cpaBHeHHS C dkcrepuMeHTamMu Ha Tokamake TEXTOR-DED mpoBemeHo TeopeTndeckoe
uccienoBanue BiusHus nosst DED Ha OTKIIMK M1a3Mbl B TOPOUAANIBHOM T€OMETPUHM Ha OCHOBE IBYkHUIKocTHOU MI'/I.

TOPOIIAJBHUI PO3TJIS] BIAT'YKY IIVIA3SMHW HA TPOHUKHEHHSA 30BHIIITHBOTO
HU3bKOYACTOTHOI'O TBUHTOBOI'O 3BYPEHHS Y KPAHOBY IIJTIA3BMY TOKAMAKA

IM. Ilankpamos, A.fl. Omenvuenko, B.B. Onvuwancokuii

Jis apekBatHOro TmOpiBHAHHA 3 ekcnepuMmeHtamu Ha Tokamali TEXTOR-DED mnpoBeneHo TteopeTuuHe
JociikeHHs BIMBY noist DED Ha BiAryk rra3Mu B TOpoifanbHili reoMeTpii Ha ocHOBI aBopinuaHoi MIT/L.
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