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 For an adequate comparison with TEXTOR-DED experiments [1] the theoretical treatment of the DED operation, 
with the plasma response has been taken into account, are made in the toroidal geometry on the basis of two-fluid MHD 
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1. INTRODUCTION 
 Control of plasma edge behaviour is the main purpose 
of the Dynamic Ergodic Divertor (DED) project of 
TEXTOR [1]. The DED helical coils create a specific 
topology of magnetic field at the plasma edge, where 
external rotating helical perturbations are resonant on the 
rational magnetic surfaces. 
 In cylindrical model the penetration of external 
perturbations was investigated in [2]. The toroidal 
modelling (without consideration of the plasma response) 
shows a more strong perturbation decrease with the 
distance from DED coils as compared with the cylindrical 
model (see, e.g., [1]). In the present paper for an adequate 
comparison with DED experiments the theoretical 
treatment of the DED operation is investigated in the 
toroidal geometry on the basis of two-fluid MHD 
equations with the plasma response being taken into 
account. 

2. BASIC EQUATIONS 
We start from the two-fluid MHD equations for 

continuity, momentum and energy conservation for 
plasma ions and electrons and the Maxwell’s equations. 
The electron-ion collision frequency is higher than the 
frequency of external perturbation. The electron inertia 
and electron stress tensor are neglected. Then by the usual 
way we take the plasma equation of motion 

( ) [ BJπVVV
×+⋅∇−−∇=⎟

⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

ip
t

ρ ] , (1) 

and the generalized Ohm’s law ( ) 0>e

[ ] [ ] ( ) ,71.0 ||

||||

eeee Teenenp ∇+×−∇+×+=

+ ⊥⊥

BJBVE

JJ σσ
  (2) 

where  and en ρ  are the plasma and plasma mass 
densities,  is the total pressure,  is the total 
current density,  is the ion gyroviscosity tensor, 

ie ppp += J

iπ ||σ  
and ⊥σ  are the parallel and perpendicular (with respect to 
the magnetic field ) conductivities, respectively. The 
parallel electron heatconductivity coefficient is assumed 
to be a large value. Hence, in our approximation (  is 
the electron temperature) 
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 We use the approximation of an incompressible 
plasma motion . We consider a current 
carrying toroidal plasma with nested equilibrium circular 
magnetic surfaces (

0~ =⋅∇ V

0ρ  is the radius of the magnetic 
surfaces, 0ω  is the poloidal angle in the cross-section 

const=ζ , ζ  is the toroidal angle). Each magnetic 
surface is shifted with respect to the magnetic axis (ξ  is 
the shift,  is the radius of the magnetic axis). The 
equilibrium toroidal contravariant component of the 
magnetic field, 

R

( )gB πζ 20 Φ′= , is large with respect to 

the poloidal one, ( )gB πχθ 20 ′= ,  and Φ′ χ ′  are the 
radial derivatives of toroidal and poloidal fluxes, 
respectively. 

By a usual manner (see, e.g., [3]) on each magnetic 
equilibrium surface we introduce the straight magnetic 
field line coordinate system ( ,a θ ,ζ )  
 a=0ρ ,  ( ) θλθω sin0 a+= , (4) 
 ( ) Raaa −′−= )(ξλ , (5) 
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Equations (4) are valid for a low plasma pressure  
and a small toroidicity a/R when it is possible to neglect 
the magnetic surfaces deformation. The well-known 
expressions for metric tensor are used [3]. 

)(0 ap

Assuming periodicity in both θ  and ζ , we take 
contravariant components of perturbations in the form 
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where ω  is the frequency of the external perturbation. 
The toroidal symmetry of the TEXTOR-DED system 
gives ,...)1,0,4(,)12( 00 ==+= knnkn . Because of the 
strong radial decay of the k > 1 harmonics, the 
perturbations can be approximated in Eq. (7) and below 
by the toroidal Fourier terms with  (see [4]). For 
contravariant components of plasma velocity and 
magnetic field perturbations,  and , the system 
of equations is obtained in the linear approximation. 
These equations take into account the resistive effects and 
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toroidal modes coupling. Poloidal mode numbers m are defined by the DED antenna spectrum. 
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 The value of  is equal to zero inside the 
plasma, when  (

)(aFm

nmaq res /)( = χ ′Φ′= /)(aq  is the safety 
factor). 
 Equation (9) contains only oscillating parts of the 
metric tensor: θξ cos211 ′=g , ( ) θξλ sin12 ′−′= aag , 

, θλ cos2 2
22 ag = θcos2 2ag −= , agg ikik ∂∂=′ , 

θ∂∂= ikik gg& , Eq. (9) is written in the compact form: 
 is the m-th poloidal harmonic of , the variables 

 and  are the total radial and poloidal 
perturbations of the magnetic field and plasma velocity, 
respectively. In Eqs. (8), (9) the small terms that are 
proportional to  and  are omitted. We included the 
equilibrium poloidal plasma rotation with the velocity 

 due to existence of an equilibrium radial electric 
field, here we also took into account the ion diamagnetic 
drift velocity and the equilibrium toroidal plasma rotation 
with a homogeneous velocity . When we neglect 
toroidicity, we use physical components of the vectors. 
For 
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 The equilibrium current density is included in Eq. (9). 
We assume that equilibrium quantities are slowly varying. 
Recall that the ion gyroviscosity tensor  compensates 
the drift diamagnetic effect [3]. 

iπ

3. RESULTS AND DISCUSSION  
 The first lines of Eqs. (8), (9) in coordinates ( ,a θ ) 
formally coincide with Eqs. (4), (7) of cylindrical model 
[2]. Recall that the solutions of cylindrical equations are 
shown for TEXTOR –DED in Fig.3 of Ref. [2]. In Eq. (9) 
the terms that are proportional to ,  and 
their derivatives describe the poloidal modes coupling due 
to plasma toroidicity in inertial, convective and 
ponderomotive terms in Eq. (1). In coordinates (

θ,a
ikVg θ,a

ik Bg

0ρ , 0ω ) 
the solutions of Eqs. (8), (9) take the form 
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Here ( )||* λmJ mm −  is the Bessel function. Mode numbers 
m* and  are defined by the TEXTOR-DED antenna 

spectrum , this having been investigated in Ref. [4] 
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The spectrum of perturbations is found from the boundary 
condition at coilρρ =0 , coilρ  is the radial position of 
DED coils. This spectrum is shown in Figure  for 
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1≈polβ  and the parabolic profile of the equilibrium 

current density (compare with [1,4]),  is the ratio of 
the plasma pressure to the pressure of the poloidal 
magnetic field. 

polβ

 The DED antenna produces the whole spectrum of m, 
but the m=12 mode term in Eq.(14) is of specific interest 
(  is the base mode resonance) [1,4] 4/12)( =resaq

 ,  . (16) ( ) ( )||1212*012 λρ −m
a JB 20~*m

Due to the small parameter ( ||* )λmJ mm −  ~ 0.06 – 0.2 for 
~ 0.5 – 1 the influence of this resonant term strongly 

drops in comparison with the cylindrical case in Fig.3 of 
Ref. [2] (compare with [1,4]). Note, that the value of 

polβ

( ||* )λmJ mm −  strongly depends on the value of  and 
the equilibrium current density profile. Note, that the 
poloidal driven force drops as . 

polβ
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 It was shown in Refs. [1
perturbations (without plasma r
account) decrease with the dista
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 Our consideration (see Eq.(16)) shows a more 
complicated behavior of the main resonant term compared 
with Eq. (17). Moreover, the behavior of the resonant 
term in our case (Eq.(16)) is not so predictable in the 
experiment in comparison with Eq.(17). 
 Estimates show, that for typical TEXTOR-DED 
parameters the resistive term in Eq. (8) is only two or 
three times larger than the toroidal coupling term. For 

 the last term in Eq. (8) may be the same order of 
magnitude as the toroidal coupling terms. 

12 >>m

4. CONCLUSIONS  
The equations that describe the penetration of external 

helical magnetic perturbations have been derived for the 
toroidal geometry in the first-order of a/R approximation. 
The role of toroidal effects is estimated. 

It is shown that as a first approximation it is possible 
to use the results of cylindrical model [2] with the small 
factor ( )||* λmJ mm −  being taken into account. This factor 
strongly reduces the effect of DED coil field. 
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МОТРЕНИЕ ОТКЛИКА ПЛАЗМЫ НА ПРОНИКНОВЕНИЕ ВНЕШНЕГО 
О ВИНТОВОГО ВОЗМУЩЕНИЯ В КРАЕВУЮ ПЛАЗМУ ТОКАМАКА 

.М. Панкратов, А.Я. Омельченко, В.В. Ольшанский 

ия с экспериментами на токамаке TEXTOR-DED проведено теоретическое 
ED  на отклик плазмы в тороидальной геометрии на основе двужидкостной МГД. 

ЗГЛЯД ВІДГУКУ ПЛАЗМИ НА ПРОНИКНЕННЯ ЗОВНІШНЬОГО 
ГО ГВИНТОВОГО ЗБУРЕННЯ У КРАЙОВУ ПЛАЗМУ ТОКАМАКА 

М. Панкратов, А.Я. Омельченко, В.В. Ольшанський 

ння з експериментами на токамаці TEXTOR-DED проведено теоретичне 
  на відгук плазми в тороідальній геометрії на основі дворідинної МГД. 
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