NEW METHOD OF ANALYZING WAVE PROCESSES IN PULSE GENERATORS BASED ON LINES WITH DISTRIBUTED PARAMETERS

V.S. Gordeev
Russian Federal Nuclear Center - All-Russia Scientific Research
Institute of Experimental Physics (RFNC-VNIIEF)
607188, Sarov, Nizhni Novgorod region, Mira Prospekt 37, Russia
E-mail: gordeev@expd.vniief.ru

A new method of theoretical analysis of wave processes in high-current pulse generators through the relations between integral values reflecting regularities of energy transfer in ideal lines with distributed parameters is described. The use of the method developed considerably simplifies the procedure of searching for an optimal - from the point of view of getting maximal efficiency - relation of impedances for pulse facilities on stepped lines including those with arbitrary number of cascades. High efficiency of the method is demonstrated by several examples.
PACS numbers: 84.30.Ng; 84.70.+p

1 INTRODUCTION

A search for new circuits for multi-cascade pulse generators is performed, as a rule, by two stages. Firstly, a generator circuit is selected. Then transient processes are analyzed basing on the subsequent consideration of voltage or current waves propagating in lines. As a result, a mathematical expression for the voltage and load current, involving impedances of all cascades can be obtained. Impedances are optimized to get a maximum efficiency, voltage or current. A complexity of traditional approach is conditioned by the necessity of accounting a large number of wave limits in the circuits before such an analysis. As a rule, these are circuits with a number of cascades not greater than 2 or 3 .

In the course of fundamental development of generators based on stepped lines [1-4] the author developed a new method of search for an optimal relation of impedances to reach 100% efficiency. Below, there are contemplated some regularities of energy transfer in generators with transmission lines the account of which in some cases significantly simplifies a search for optimal impedances. The method application is illustrated on the example of generators with different techniques of energy storage. All generators are formed by the homogeneous lines (cascades) of the equal electrical length T_{0}. For each case there are defined conditions when for idealized models the generator has 100% efficiency at formation of a squared pulse of $2 T_{0}$ duration on the matched load.

2 SOME REGULARITIES OF ENERGY TRANSMISSION IN IDEAL LINES

From Maxwell equations one can get two integral relationships. The first one determines a relation between time integral of voltage for arbitrary closed circuit L and a change of magnetic induction flux through an arbitrary surface S, which is supported by this circuit: $\int_{0}^{t} U d t=\Phi_{m s}(0)-\Phi_{m s}(t)$, where $U=\oint_{L} E d l$. The second relationship defines a relation of time integral of
conduction current flowing through a closed surface S, with a charge change in the volume V limited by this
surface: $\int_{0}^{t} I d t=q(0)-q(t)$.
Provided the energy is extracted out from the volume V by the time moment t_{0}, the formulas have a simpler form:

$$
\left\{\begin{array}{l}
\int_{0}^{t_{0}} U d t=\Phi_{m}(0) \tag{1}\\
\int_{0}^{t_{0}} I d t=q(0)
\end{array}\right.
$$

Following equations (1), (2) is a necessary and sufficient condition for a complete extraction of energy. It is convenient to select the time moment as a beginning of the integration interval $t=0$, when, as a result of commutation, in the generator electromagnetic waves appear. In this case for generators with a capacitive energy storage the right part of equation (1) is equal to zero, and for generators with an inductive energy storage - the right part of equation (2) equals to zero.

The formulas obtained do not find a wide application when solving electrotechnical problems, as $U(t)$ and $I(t)$ in most cases change by unknown law that makes impossible their integration. The situation is different for stepped lines, when pulses are in the form of squared steps, and time integration amounts to summation of constant magnitude products. The time integral of voltage equaling to zero, as a necessary condition for a complete energy extraction from capacitive generators, was mentioned earlier in paper [5].

3 CAPACITIVE GENERATOR

Let us consider as an example a circuit of a generator (Fig. 1) formed from $n \geq 2$ cascades with impedances $Z_{1}, Z_{2}, \ldots, Z_{n}$. Cascades with impedances Z_{n-1}, Z_{n} are charged from the external source up to the voltage U_{0}. After charging is finished ($t=0$), a switch S_{1} is closed. The load $Z_{L}=Z_{1}$ is connected to the gen-
erator by a switch $S_{2}\left(t=n T_{0}\right)$ with delay by $2 T_{0}$ with regard to arrival of the first wave from switch S_{1} to it.

As the voltage along the circuit L (Fig. 1a) differs from zero only in the cross-section $A B$, equation (1) takes the following form:

$$
\begin{equation*}
\int_{0}^{t_{0}} U_{A B} d t=0 . \tag{3}
\end{equation*}
$$

As cascades with numbers $1 \div(n-2)$ are not initially charged, for the surface S (Fig. 1a) intersecting a grounding electrode near the load and at the juncture of i and $i+1$ cascades, equation (2) is converted into the form:

$$
\begin{equation*}
\int_{0}^{t_{0}} I d t=0 . \tag{4}
\end{equation*}
$$

Fig. 1. Capacitive generator circuit.
Let the wave arrives to the cross-section $A B$ at the time moment t_{i}. The voltage and current in this crosssection should differ from zero in the time interval $t_{i} \div\left(t_{i}+4 T_{0}\right)$. If one designates the amplitude of voltage and current in the time intervals $t_{i} \div\left(t_{i}+2 T_{0}\right)$ and $\left(t_{i}+2 T_{0}\right) \div\left(t_{i}+4 T_{0}\right)$ as $U_{i 1}, I_{i 1}$ and $U_{i 2}, I_{i 2}$, equations (3), (4) takes the form $U_{i 1}+U_{i 2}=0, I_{i 1}+I_{i 2}=$ $I_{L}=U_{L} / Z_{1}$. Energy transmitted through the cross-section $A B$ should be equal to the energy absorbed in the load: $\left(U_{i 1} I_{i 1}+U_{i 2} I_{i 2}\right) \cdot 2 T_{0}=\left(U_{L}^{2} / Z_{1}\right) \cdot 2 T_{0}$. When solving jointly equations with the use of relations $U_{i 1} / I_{i 1}=Z_{i}$ and $U_{i-1,1}=U_{i 1} 2 Z_{1-1} /\left(Z_{i-1}+Z_{i}\right)$ we obtain:

$$
\begin{equation*}
2 U_{i 1}^{2} / Z_{i}+U_{i 1} U_{L} / Z_{1}=U_{L}^{2} / Z_{1} \tag{5}
\end{equation*}
$$

After subtraction from (5) of the similar equation for the voltage $U_{i-1,2}$ with regard to $U_{L}=-2 U_{11}$ let us find the final expression for relation of impedances of cascades with numbers $i \leq n-2$:

$$
\begin{equation*}
Z_{i}=2 Z_{1} /[i \cdot(i+1)] \tag{6}
\end{equation*}
$$

In this case the voltage on the load is

$$
\begin{equation*}
U_{L}=-2 U_{n-2,1} \prod_{j=1}^{n-3}\left[2 Z_{j} /\left(Z_{j}+Z_{j+1}\right)\right]=-U_{n-2,1}(n-1) . \tag{7}
\end{equation*}
$$

Now let us line a circuit (Fig. 1b) passing along the grounding and high-voltage electrodes of a line with impedance Z_{n} through switch S_{1} and junction of lines with impedances Z_{n}, Z_{n-1}. When closing the switch S_{1} the voltage along the circuit differs from zero only at the junction of cascades with impedances Z_{n}, Z_{n-1}. One can demonstrate that in the time interval $0 \div T_{0}$ the volt-
age is U_{0} and in the interval $T_{0} \div 3 T_{0}$ -$U=-U_{0}\left\{\left(Z_{n-1}-Z_{n}\right) /\left(Z_{n-1}+Z_{n}\right)+\left[2 Z_{n-1} Z_{n-2} /\left(Z_{n-1}+Z_{n-2}\right)\right.\right.$. $\left.\left.\left(Z_{n-1}+Z_{n}\right)\right]\right\}$. Further the voltage in this cross-section should be equal to zero, for, otherwise, the residual energy will not have a chance to arrive at the load by the time moment $t=(n+2) T_{0}$. From the condition of equation to zero of time integral of voltage in this cross-section (1) we obtain:

$$
\begin{gather*}
\left(Z_{n-1}-Z_{n}\right) /\left(Z_{n-1}+Z_{n}\right)+\left[2 Z_{n-1} Z_{n} /\left(Z_{n-1}+\right.\right. \\
\left.\left.+Z_{n-2}\right)\left(Z_{n-1}+Z_{n}\right)\right]=1 / 2 . \tag{8}
\end{gather*}
$$

Through the left bound into the volume limited by the surface S (Fig. 1b) in the time interval $T_{0} \div 3 T_{0}$ there flows out current $U_{0} /\left(2 Z_{n}\right)$, and through the left bound in the time interval $n T_{0} \div(n+2) T_{0}$ there flows out current U_{L} / Z_{1}. The voltage on the load can be determined with regard to (7): $U_{L}=U_{0}(n-1) Z_{n-2} /\left(Z_{n-1}+Z_{n-2}\right)$. As for the case under study $q(0)=U_{0} T_{0} / Z_{n-1}$, equation (4) is transformed as:
$1 / Z_{n-1}=1 / Z_{n}-2(n-1) \cdot Z_{n-2} /\left[Z_{1} \cdot\left(Z_{n-1}+Z_{n-2}\right)\right]$. (9)
Solving equations (8), (9) with regard to (6) we find: $Z_{n}=2 Z_{1} /[n(n+1)], Z_{n-1}=2 Z_{1} /[(n-1) n]$.

In ideal case such a generator possesses 100% efficiency and forms a rectangular voltage pulse of $2 T_{0}$ duration and amplitude $U_{L}=n U_{0} / 2$ on the matched load. Addition of each supplementary cascade to the generator raises the voltage by $U_{0} / 2$.

4 INDUCTIVE GENERATOR

Let us consider a stepped forming line (SFL, Fig. 2) constituted by n subsequently connected cascades. In the initially closed circuit composed by electrodes of SFL and current opening switches S_{1} and S_{2} under the action of the external source the current is created I_{0} and magnetic energy is stored in the SFL. At the time moment $t=0$ the opening switch S_{1} disconnects the current source, and the load is connected to the stepped forming line at S_{2} operation at the time moment $t=n T_{0}$.

Fig. 2. Inductive generator circuit.
For the closed surface S covering a part of one of electrodes of SFL from the output (point A) to the juncture of i and $i+1$ cascades (point B), according to (2) for circuits with an inductive energy storage $\int_{0}^{t_{0}} I d t=0$. As at $t \geq 0 \quad S_{1}$ is opened, the value I represents the current at the juncture of i and $i+1$ cascades. Before the current arrival from S_{1} the current I_{B} equals I_{0}. At the time moment $t=i T_{0}$ the current becomes
equal $I_{0}\left\{1-2^{i} \cdot \prod_{i=2}^{i+1}\left[Z_{i-1} /\left(Z_{i-1}+Z_{i}\right)\right]\right\}$ and remains constant in the time interval $i T_{0} \div(i+2) T_{0}$. At $t>(i+2) T_{0}$ the current $I_{B}=0$. Equating the I_{B} current time integral to zero we obtain $t=(n-i-2) T_{0}$ or $\prod_{j=2}^{i+1}\left[Z_{j-1} /\left(Z_{j-1}+Z_{j}\right)\right]=(i+2) \cdot 2^{-(i+1)}$.

The given equation is reduced to the form:

$$
\begin{equation*}
Z_{i} / Z_{1}=2 /[i(i+1)] \tag{10}
\end{equation*}
$$

Provided that (10) is adhered, on the matched load there is formed a rectangular current pulse of the amplitude $I_{0} n / 2$ and duration $2 T_{0}$, during this pulse the energy is fully delivered to the load.

5 INDUCTIVE-CAPACITIVE GENERATOR

The generator (Fig. 3) contains $n \geq 2$ cascades with impedances $Z_{1}, Z_{2}, \ldots, Z_{n}$. The magnetic energy $W_{L 0}$ is stored in all cascades under the action of the I_{0} current, formed by the external source. Simultaneously, the electric energy $W_{C 0}$ is stored in $n-1$ and n cascades charged up to the voltage U_{0} from another source. At the time moment $t=0$ the switch S_{1} is closed and opening switch S_{2} connects the load at the time moment $t=(n-2) T_{0}$. Switch S_{3} must close the grounding electrode before the first wave arrives from S_{1}.

Fig. 3. Inductive-capacitive generator circuit.
Applying the integral equation (1) for the circuit passing through a short-circuited electrode of stepped lines, supposing that the voltage on the load is U_{L} we obtain:

$$
\begin{equation*}
U_{L}=\left(I_{0} L\right) / 2 T_{0}=\left(I_{0} \cdot \sum_{i=1}^{n} Z_{i}\right) / 2 T_{0} \tag{11}
\end{equation*}
$$

where L is a total inductance of stepped line. The energy transmitted to the load with regard to (11) is

$$
\begin{equation*}
W_{L}=U_{L} I_{L} 2 T_{0}=0.5 I_{L} I_{0} T_{0} \sum_{i=1}^{n} Z_{i} \tag{12}
\end{equation*}
$$

$$
\text { As } W_{L}=W_{L 0}+W_{C 0} \text { we get: }
$$

$$
\begin{equation*}
I_{L} / I_{0}=0.5\left(1+W_{C 0} / W_{L 0}\right)=0.5(1+\lambda) \tag{13}
\end{equation*}
$$

where the factor $\lambda=W_{C 0} / W_{L 0}$.
Let us now consider the surface S (Fig. 3). Current flowing through the surface S at the point A in the time $0 \div(n-i-2) T_{0}$ is equal to I_{0}. After the arrival of the voltage wave of U_{i} amplitude at the i cascade from S_{1} at the time moment $t=(n-i-2) T_{0}$ the current increases up to $I_{0}+U_{i} / Z_{i}$ and remains constant during
the time interval $2 T_{0}$. Beginning with the time moment $t=(n-i) T_{0}$ the current in this cross-section must be equal to zero. The current flowing out through the surface S at the point B remains equal to I_{0} until the switch S_{2} is opened. Then in the time interval ($n-2$) $T_{0} \div n T_{0}$ this current equals to the load current U_{I} / Z_{1}.

Taking into account that $q_{0}=0$ the relation (2) will be written in the form

$$
\left(I_{0}+U_{i} / Z_{i}\right) 2 T_{0}=I_{0} i T_{0}+U_{L} 2 T_{0} / Z_{1}
$$

or

$$
\begin{equation*}
2 U_{i} / Z_{i}=I_{i} \cdot(i-2)+2 U_{L} / Z_{1} \tag{14}
\end{equation*}
$$

Taking into account that

$$
\begin{align*}
& U_{1}=U_{i} \cdot \prod_{j=1}^{i-1}\left[2 Z_{j} /\left(Z_{j}+Z_{j+1}\right)\right] \tag{15}\\
& U_{L}=U_{1}+I_{0} \cdot Z_{1} / 2 \tag{16}
\end{align*}
$$

from (14) one can get a relation

$$
\begin{gathered}
2\left(U_{L}-I_{0} Z_{1} / 2\right) / Z_{i}= \\
=\left[I_{0}(i-2)+2 U_{L} / Z_{i}\right] \cdot \prod_{j=1}^{i-1}\left[2 Z_{j} /\left(Z_{j}+Z_{j+1}\right)\right] .
\end{gathered}
$$

Solving this equation together with a similar equation written for a cascade with a number greater by one unit we find a recurrence formula $Z_{i+1}=Z_{i}\left[2 I_{L} / I_{0}+\right.$ $+(i-2)] /\left(2 I_{L} / I_{0}+i\right)$ and an expression for impedances of cascades with numbers $i=1 \div(n-2)$:

$$
\begin{equation*}
Z_{i}=Z_{1} \lambda(\lambda+1) /[(\lambda+i) \cdot(\lambda+i-1)] \tag{17}
\end{equation*}
$$

After the switch S_{1} is closed the energy must be fully extracted from the cascade with the impedance Z_{n} in the time interval $0 \div T_{0}$. In the mathematical form this condition has the form:

$$
\begin{equation*}
U_{0}=Z_{n} \cdot I_{0} \tag{18}
\end{equation*}
$$

To avoid a recharge of this cascade one must avoid appearance of the voltage wave reflected from the juncture of n and $n-1$ cascades:

$$
\begin{align*}
& U_{0}\left(Z_{n-1}-Z_{n}\right) /\left(Z_{n-1}+Z_{n}\right)+U_{0} 2 Z_{n} Z_{n-1} / \\
& \quad\left[\left(Z_{n}+z_{n-1}\right)\left(Z_{n-1}+Z_{n-2}\right)\right]=0 \tag{19}
\end{align*}
$$

When closing the switch S_{1} the voltage wave will go into cascade $n-2$

$$
\begin{equation*}
U_{n-2}=U_{0} Z_{n-2} /\left(Z_{n-1}+Z_{n-2}\right) . \tag{20}
\end{equation*}
$$

The amplitude of this wave can be also determined from equation (15) taking into account (16), (17):

$$
\begin{gather*}
U_{n-2}=U_{1} / \prod_{j=1}^{n-3}\left[2 Z_{j} /\left(Z_{j}+Z_{j+1}\right)\right]=0.5 \cdot\left(2 I_{L}-I_{0}\right) / \\
\prod_{j=1}^{n-3}[(k+j) /(k+j-1)]=0.5 Z_{1} I_{0} \lambda(\lambda+1) /(\lambda+n-2) \tag{21}
\end{gather*}
$$

Equating the right sides of (20) and (21) we obtain: $U_{0} Z_{n-2} /\left(Z_{n-1}+Z_{n-2}\right)=0.5 Z_{1} I_{0} \lambda(\lambda+1) /(\lambda+n-2)$.
From (19) we find:
$Z_{n}=Z_{n-1}\left(Z_{n-2}+Z_{n-1}\right) /\left(Z_{n-2}-Z_{n-1}\right)$.
Substituting the expression for Z_{n} in (21) with regard to (18) we find the impedance Z_{n-1} :

$$
\begin{equation*}
Z_{n-1}=Z_{1} \lambda(\lambda+1) /[(\lambda+n-2) \cdot(\lambda+n-1)] . \tag{23}
\end{equation*}
$$

The optimal impedance Z_{n} is found after substitution of the expression (23) in (22):

$$
\begin{equation*}
Z_{n}=Z_{1} \lambda(\lambda+1) /(\lambda+n-1) . \tag{24}
\end{equation*}
$$

The voltage on the load is equal to

$$
\begin{equation*}
U_{l}=U_{0}(\lambda+n-1) / 2 \lambda . \tag{25}
\end{equation*}
$$

The optimal relation of generator impedances (Fig. 3) is determined by equations (17), (23) and (24). Besides, there should be matched the amplitudes of U_{0} and I_{0} according to expression (18). Polarity of charged voltage should be so that after the switch S_{1} is closed, the current in the line n decreases.

6 CONCLUSION

There was developed a new method of calculation, whose employment significantly simplifies a search for optimal relation of impedances of multi-cascade generators on stepped lines possessing in the ideal case 100% efficiency. A high efficiency of the method was demonstrated on the example of generator circuits with different methods of energy storage.

REFERENCES

1. V.S.Bosamykin, V.S.Gordeev, A.I.Pavlovskii. New schemes for high-voltage pulsed generators based on stepped transmission lines // Proc. of IX Intern. Conf. on High Power Particle Beams "BEAMS $92 "$ Washington, DC, May 25-29, 1992. v. 1, p. 511-516.
2. V.S.Gordeev, V.S.Bosamykin. Schemes of highpower pulsed generators with inductive storages on stepped lines // Proc. of XI Intern. Conf. on High Power Particle Beams "BEAMS 96". Prague, 1996. v. 2, p. 938-941.
3. V.S.Bosamykin, A.I.Gerasimov, V.S.Gordeev. Ironless linear induction accelerators of electrons as powerful generators of short bremsstrahlung pulses / High densities of energy. Collection of scientific papers. RFNC-VNIIEF. Sarov. (In Russian). 1997. p. 107-133.
4. V.S.Gordeev. Schemes of high-voltage pulse shapers on the basis of stepped transmission lines for high-current accelerators // Problems of Atomic Science and Technology. Issue: Nuclear-Physics Research (35). 1999, No. 4, p. 68-70.
5. I.D.Smith. Linear induction accelerators made from pulse-line cavities with external pulse injection // Rev. Sci. Instrum. 1979, v. 50, № 6, p. 714-718.
