ИССЛЕДОВАНИЯ АНИЗОТРОПНОЙ ТЕРМИЧЕСКОЙ И РАДИАЦИОННО-ТЕРМИЧЕСКОЙ ПОЛЗУЧЕСТИ ОБОЛОЧЕЧНЫХ ТРУБ ИЗ СПЛАВА Zr-1%Nb

А.Я.Рогозянов, Г.П.Кобылянский, А.Е.Новосёлов, А.А.Нуждов, И.М.Кадарметов*, А.В.Медведев*

ГНЦ РФ НИИАР, г. Димитровград, Россия; *ГНЦ РФ ВНИИНМ, г. Москва, Россия

Приведено результати розрахунково-експериментальних досліджень термічної і радіаційно-термічної повзучості оболонкових труб з сплаву Zr-1% Nb. Досліджена поведінка еквівалентної швидкості сталої багатокомпонентної повзучості і визначені коефіцієнти анізотропії всіх її компонент.

Приведены результаты расчётно-экспериментальных исследований термической и радиационно-термической ползучести оболочечных труб из сплава Zr-1% Nb. Исследовано поведение эквивалентной скорости установившейся многокомпонентной ползучести и определены коэффициенты анизотропии всех её компонент.

Presented here are the results of calculated and experimental studies on the thermal and radiation-thermal creep of Zr-1% Nb cladding tubes. The behavior of equivalent rate of steady complex creep was studied and the anisotropy factors of all its components were determined.

ВВЕДЕНИЕ

Работа посвящена изучению закономерностей установившейся ползучести российского циркониевого сплава Zr-1%Nb (Э110), из которого изготавливают оболочки твэлов всех энергетических реакторов типов ВВЭР и РБМК.

Опыт исследований такого рода, включая и зарубежный на циркалоях и сплаве Zr-2,5%Nb [1, 2], показывает, что ползучесть сплавов циркония под облучением включает как чисто радиационные, так и обычные, термические компоненты.

В отличие от сталей внереакторная ползучесть сплава Zr–1%Nb при температурах ниже 450 °C достаточно велика и легко фиксируется средствами измерения. Это позволило изучать закономерности поведения термических компонент в основном без облучения.

При исследовании радиационных компонент задача состояла в том, чтобы обеспечить достаточно полную имитацию условий эксплуатации оболочек твэлов с учётом перспектив повышения выгорания продуктов деления до 70 и более МВт · сут/ кгU.

В статье представлены результаты исследования зависимостей эквивалентной скорости установившейся ползучести сплава Zr-1%Nb, главным образом в виде оболочечных труб, от основных факторов внешнего воздействия и поведения коэффициентов анизотропии ползучести.

1. ОБРАЗЦЫ И МЕТОДИКИ ИСПЫТАНИЙ

Исследования проводили с использованием специально разработанной методологии, в основе которой лежит система уравнений механики, связывающих компоненты скоростей деформации $\hat{\xi}_z$, $\hat{\xi}_{\parallel}$, $\hat{\xi}_{\parallel}$,

напряжения σ_z , σ_θ , σ_r в продольном z, тангенциальном θ и радиальном r направлениях, их эквивалентные значения $\dot{\epsilon}_{_{3KB}}(\mathbf{v}^{_1})$, $\sigma_{_{3KB}}(M\Pi a)$ и коэффициенты анизотропии Хилла G, H и F:

$$\dot{\epsilon}_{z} = (\dot{\epsilon}_{_{3KB}}/\sigma_{_{3KB}})[(G+H)\sigma_{z} - G\sigma_{\theta} - H\sigma_{r}],$$

$$\dot{\epsilon}_{\theta} = (\dot{\epsilon}_{_{3KB}}/\sigma_{_{3KB}})[(F+G)\sigma_{\theta} - G\sigma_{z} - F\sigma_{r}],$$

$$\dot{\epsilon}_{r} = (\dot{\epsilon}_{_{3KB}}/\sigma_{_{3KB}})[(F+H)\sigma_{r} - H\sigma_{z} - F\sigma_{\theta}],$$

$$\sigma_{_{3KB}} = \sqrt{F(\sigma_{r} - \sigma_{\theta})^{2} + G(\sigma_{\theta} - \sigma_{z})^{2} + H(\sigma_{z} - \sigma_{r})^{2}},$$

$$G+H=1.$$
(1)

Для определения коэффициентов анизотропии к испытаниям при растяжении по оси z добавляли испытания газонаполненных образцов, которые считали тонкостенными ($\sigma_{\theta} \approx 2\sigma_z$, $\sigma_r \approx 0$). В обоих случаях непрерывно или периодически измеряли продольную ϵ_z и тангенциальную ϵ_{θ} деформации, а по ним рассчитывали скорости $\hat{\epsilon}_z$ и $\hat{\epsilon}_{\theta}$.

По результатам испытаний с растяжением определяли G и H :

G=1-H=-
$$(\epsilon_{\theta}/\epsilon_{z})_{P}$$
. (2)

Коэффициент F определяли по результатам испытаний образцов при газовом нагружении:

$$F = (\varepsilon_{\theta} / \varepsilon_{z})_{\Gamma} (0.5 - G) - 0.5G. \tag{3}$$

В случае линейной ползучести ($\dot{\epsilon}_{_{9KB}} = A \cdot \sigma_{_{9KB}}$) использовали другую методику. Сначала находили коэффициент A по результатам испытаний с растяжением. По результатам испытаний газонаполненных образцов определяли

G=1- H=0,5-
$$(\epsilon_z)_{\Gamma}/(A\cdot\sigma_\theta)$$
 (4)

И

$$F = \frac{(\varepsilon_{\theta})_{\Gamma}}{A \cdot \sigma_{\theta}} - 0.5G. \tag{5}$$

Напряжение σ_{θ} рассчитывали, используя зависимость

$$\sigma_{\theta} = \frac{\overline{D}}{2\delta} P , \qquad (6)$$

где P – давление газа в трубке при испытании, МПа; \overline{D} , δ - средний диаметр и толщина трубки.

Образцы для испытаний представляли собой отрезки штатных оболочечных трубок с наружным диаметром 9,15 мм и толщиной 0,7 мм.

Длина отрезков при испытаниях на растяжение была равна 50 мм, при газовом нагружении 95... 97 мм.

При стендовых и внутриреакторных испытаниях на растяжение продольную деформацию ε_z измеряли непрерывно, тангенциальную ε_{θ} - периодически.

В условиях облучения испытания на растяжение проводили в инструментованном реакторе РБТ-6 на образцах, предварительно облучённых в реакторе БОР-60, что позволяло значительно сокращать время достижения установившейся ползучести и изучать зависимость $\dot{\epsilon}_{_{3KB}}$ от дозы облучения.

Газонаполненные образцы испытывали на стенде и в реакторах РБТ-6 и БОР-60. Во всех этих случаях измерения размеров проводились периодически.

Условия испытаний на ползучесть: температура $230...450\,^{\circ}\text{C}$, напряжения $70...350\,\text{M}\Pi a$, скорости радиационной повреждаемости $10^{-4}...2,5\cdot 10^{-3}\,\text{сна/ч}$, дозы радиационной повреждаемости $0,1...30\,\text{сна}$. Погрешности измерения и поддержания температуры $1\,\%$, напряжения – около $2\,\%$ (с учётом допустимых колебаний толщины трубок), деформации $2...5\,^{\circ}$ мкм, параметров облучения $5\,\%$.

2. ВНЕРЕАКТОРНАЯ ПОЛЗУЧЕСТЬ

2.1. Определение коэффициентов анизотропии

Подробное изложение результатов испытаний трубчатых образцов из сплава Zr–1%Nb при продольном растяжении и газовом нагружении с целью определения коэффициентов анизотропии ползучести сделано нами в работе [3].

Показано, что при температуре 350 °С, напряжениях $\sigma_{\theta} = 102...146$ МПа и временах испытаний на растяжение от 1 до 248 ч. отношение ($\epsilon_z/\epsilon_{\theta}$) $_p = -(1,64 \pm 0,04)$. Испытания образцов под давлением при той же температуре, напряжениях $\sigma_{\theta} = 115...$ 167 МПа и временах 90...1605 ч. дали ($\epsilon_z/\epsilon_{\theta}$) $_r = -$

 $(0,188 \pm 0,016)$. Отсюда с помощью выражений (2) и (3) были рассчитаны коэффициенты анизотропии: $G = 0.61 \pm 0.02$; $H = 0.39 \pm 0.02$; $F = 0.28 \pm 0.18$.

Продолжая аналогичные испытания, убедились, что отношение $(\epsilon_z/\epsilon_\theta)_r$ оставалось тем же при изменениях температур испытания в диапазоне 300...420 °C и расширении диапазона σ_θ до 200 МПа.

Позднее [4] нами было показано, что результаты исследований анизотропии ползучести трубок из сплава Zr–1%Nb при температурах 350...400 °C и шести разных схемах нагружения (растяжение и сжатие по оси z, газовое нагружение, комбинации растяжения и сжатия с газовым нагружением), приведённые в работе [5], удовлетворительно описываются указанными коэффициентами.

Во всех перечисленных испытаниях зависимость скоростей ползучести $\dot{\xi}_z$ и $\dot{\xi}_\theta$ от напряжений σ_z и σ_θ была степенной с показателем степени 5...7.

Отсюда можно заключить, что полученными значениями G, H и F можно выразить анизотропию степенной термической ползучести оболочек из сплава Zr-1%Nb, по крайней мере, при температурах 300...420 °C, напряжениях 100...200 МПа и деформациях до 12 %.

2.2. Исследования температурно-силовой зависимости эквивалентной скорости установившейся ползучести

Объектами испытаний были в основном трубки диаметром 9,15 мм и толщиной 0,7 мм. Для расширения температурно-силового диапазона исследований к анализу были привлечены массивы данных, получаемых на трубках диаметром 5,8 мм и толщиной 0,5 мм и на гагаринских образцах диаметром 3 мм, изготовленных из штатного прутка диаметром 10 мм. Все перечисленные объекты испытаний обладали близкой текстурой и полученные на них результаты оказались сопоставимы.

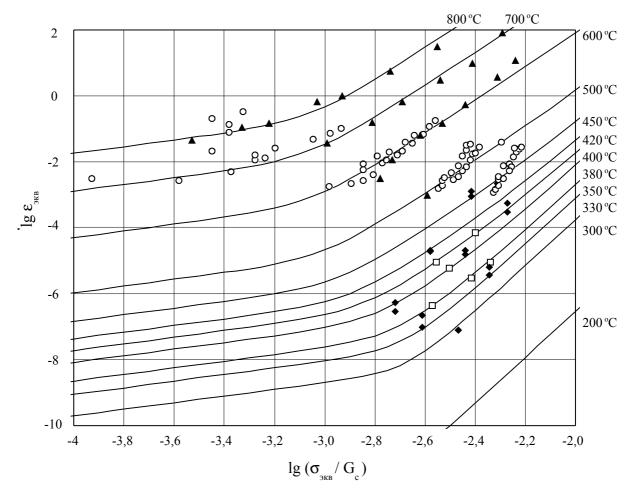
Их детальный анализ и процедура обработки описаны нами в работе [4]. В ней обоснована возможность использования представлений о высокотемпературной и низкотемпературной степенной ползучести, а также о диффузионной линейной ползучести Набарро-Херринга и Кобле. Все эти виды ползучести проявляют себя в ГПУ-материалах [6] и осуществляются с помощью диффузии по объёму зёрен (высокотемпературная степенная ползучесть, ползучесть Набарро-Херринга), дислокационным трубкам (низкотемпературная степенная ползучесть) и границам зёрен (ползучесть Кобле). Причём у степенных компонент показатель степени при низких температурах равен 7, при высоких 5.

В результате получена зависимость $\dot{\epsilon}_{_{_{3KB}}}$ (ч $^{-1}$) от температуры Т(К), напряжения $\sigma_{_{3KB}}$ (МПа) и размера зерна d (м) :

$$\dot{\varepsilon}_{_{3K8}} = 2,88 \cdot 10^{25} \frac{\sigma_{_{3K8}}^{5}}{TG_{c}^{4}} e^{-\frac{30070}{T}} + 1,72 \cdot 10^{22} \frac{\sigma_{_{3K8}}^{7}}{TG_{c}^{6}} e^{-\frac{18040}{T}} + 8,46 \cdot 10^{2} \frac{\sigma_{_{3K8}}}{d^{2}T} e^{-\frac{30070}{T}} + 6,69 \cdot 10^{-10} \frac{\sigma_{_{3K8}}}{d^{3}T} e^{-\frac{18040}{T}},$$
(7)

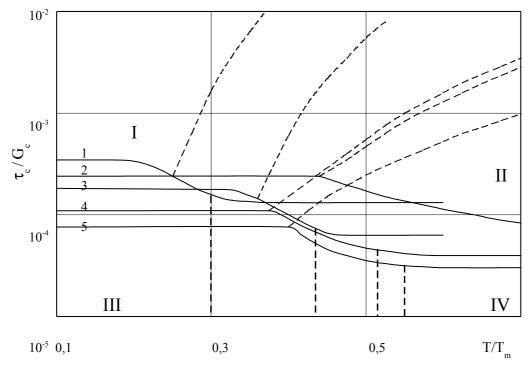
где G_c – зависящий от температуры модуль сдвига, МПа.

Соответствие расчёта с экспериментом нарушается, в определённой мере, лишь при больших нагрузках и связанных с ними больших деформациях. Объясняется это тем, что фактические напряжения в этих случаях уже нельзя определять по исходной площади поперечного сечения образцов.


На рис.2 представлены границы температурносиловых областей проявления каждого из четырёх механизмов ползучести оболочек из сплава Zr— 1%Nb. Там же для сравнения показаны аналогичные границы для Mg, Ti, Zn и Cd, взятые из работы [6]. Замечены следующие закономерности в расположении границ. Границы, разделяющие между собой степенные компоненты, а также линейные компоненты, сдвигаются в сторону меньших гомологических температур T/T_m по мере увеличения температуры плавления T_m . Границы раздела степенных компонент от линейных сдвигаются к большим относительным напряжениям σ_s/G_c по мере роста σ_b/G_c , где σ_b — предел прочности.

3. ВНУТРИРЕАКТОРНАЯ ПОЛЗУЧЕСТЬ

3.1. Исследования эквивалентной скорости установившейся ползучести при малой скорости радиационной повреждаемости


В табл.1 представлены результаты исследования скорости ползучести $\dot{\epsilon}_{_{3 \text{KB}}}$, полученные при испытаниях в реакторе РБТ-6 растягиваемых образцов, предварительно облучённых в реакторе БОР-60 при температуре 302...314 °C, скорости радиационной повреждаемости $K=(1,32...2,16)\cdot 10^{-4}$ сна/ч до доз 2,63...9,51 сна.

Испытания проводили при постоянном значении

Для обеспечения сопоставимости результатов вме-

K=10⁻¹ сна/ч в режиме ступенчатого изменения напряжения и температуры с изучением на каждой ступени установившейся ползучести.

Анализ и обработка результатов сводится к следующему:

Рис. 1. Расчётные зависимости эквивалентной скорости ползучести $\mathfrak{E}_{_{3K8}}$ от относительного эквивалентного напряжения $\sigma_{_{3K8}}/G_c$ для температур внереакторного испытания 200...800 °C. Экспериментальные точки: □ - трубки Ø 9,15 × 0,7 мм; ▲ - трубки Ø 9,15 × 0,7 мм [7]; ◆ - трубки других размеров; О - гагаринские образцы

 $Puc.\ 2.\ \Gamma$ раницы температурно-силовых областей проявления различных механизмов внереакторной ползучести в оболочечных трубках из сплава Zr-1% Nb (1) и в чистых металлах Mg (2), Ti (3), Zn (4), Cd (5). Области проявления ползучести: I – низкотемпературная степенная; II – высокотемпературная степенная; III – ползучесть III – ползучесть IIII – ползучесть IIIII – ползучесть IIIII – ползучесть IIIII – по

1. Независимо от дозы повреждаемости при температурах 300...330 °С и напряжениях до 200 МПа превалирует радиационная линейная компонента ползучести, скорость которой описывается зависимостью

$$\dot{\varepsilon}_{P,\Pi} = BK\sigma_{SKB}$$
 (8)

с модулем радиационной ползучести B, равным $(1,10\pm0,20)10^{-4}\,\mathrm{M\Pi a^{-1}cha^{-1}}.$

Указанная компонента независима от температуры. Но с ростом Т напряжения, при которых она преобладает над другими компонентами, монотонно снижается. Вклад её в деформацию существенно больше по сравнению с вкладом термической диффузионной ползучести.

2. С повышением температуры и напряжения проявляются и становятся превалирующими компоненты ползучести, скорость которых в сильной степени зависит от Т и $\sigma_{_{3KB}}$. Они могут быть идентифицированы как термические степенные компоненты, аналогичные присутствующим в выражении (7), но с численными коэффициентами, уменьшенными вследствие радиационного упрочнения.

На рис.3 в качестве иллюстрации приведены температурные зависимости скорости ползучести $\hat{\epsilon}_{_{3KB}}$ для необлучаемых и облучаемых трубок из сплава Zr–1%Nb при напряжении $\sigma_{_{3KB}}=238$ МПа. Зависимости построены с помощью выражений (7), (8) и (9) и служат подтверждением того, что при достаточно больших напряжениях $\hat{\epsilon}_{_{3KB}}$ под облучением может быть меньше, чем без облучения. В данном случае такая ситуация наблюдается при температурах 250...425 °C.

При меньших напряжениях и больших скоростях повреждаемости температурный диапазон проявления описанного эффекта сужается вплоть до полного исчезновения.

Если две степенные компоненты описывать как совокупный процесс с эффективной энергией активации $Q_{\text{эф}}$, её изменение с температурой будет таким, как это показано на рис.3.

Переход от энергии 250 к 150 кДж/мольК в условиях облучения происходит при температурах более низких (на 100...150 °C), чем без облучения.

3. При температуре 375 °C и выше длительная выдержка (десятки часов при 375 °C и ~1 ч. при

425 °C) после изучения установившейся стадии приводит к увеличению скорости ползучести в 2-3 раза. Если после этого снизить напряжение, то вначале эффект такого рода исчезает. В дальнейшем, по всей вероятности, после приведения плотности линейных дислокаций в соответствие с озкв, он снова проявляется.

Такое поведение Е можно объяснить изменением концентрации и размеров дислокационных петель с ростом температуры облучения. Кинетика этого процесса такова, что сначала наступает установившаяся ползучесть, соответствующая практически исходной петлевой структуре. По истечении относительно большого промежутка времени эта структура приходит в новое равновесное состояние,

Таблица 1 Результаты испытаний при продольном растяжении в реакторе РБТ-6 предварительно облучённых

образцов											
Усл	овия испытани	ий в РБТ-6	. c−1	Условия испытаний в РБТ-6			ċ1				
T, °C	$σ_θ$, ΜΠ a	t,ч	$\dot{\mathfrak{t}}_{_{9KB}},\mathbf{y}^{-1}$	T, °C	$σ_θ$, ΜΠ a	t,ч	$\dot{\mathfrak{t}}_{_{9KB}},\mathbf{y}^{-1}$				
300	100	400	1,07·10-6	260	138	170	3,75·10 ⁻⁶				
	150	140	1,67·10-6	360	163	155	6,82·10 ⁻⁶				
	200	165	2,37·10-6	375	175	104	1,52·10 ⁻⁵				
	250	300	2,50·10-6		200	47	2,53·10 ⁻⁵				
450	125	4,5	2,93·10 ⁻⁴		225	84	4,56·10-5				
430	168	2,2	2,60·10 ⁻³		250	24	2,76·10 ⁻⁴				
	100	540	1,11.10-6		200	10	2,55.10-5				
330	150	250	1,67·10-6			34	8,36.10-5				
330	200	130	3,33.10-6	400	140	74	2,40·10 ⁻⁵				
	238	170	5,80·10 ⁻⁶	400	190	22	6,80.10-5				
352	238	38	1,50.10-5		250	3,2	1,05·10 ⁻³				
379	238	24	7,08·10 ⁻⁵		225	6	3,14·10 ⁻⁴				
403	238	2,2	3,65·10-4	300	100	590	1,05·10 ⁻⁶				
425	238	, °C 0,5	1,52·10 ⁻³	300	200	1248	2,28·10 ⁻⁶				
103	550 500 450 4	00 350 ₅ 300	<u>3,20:10-3</u> €	350	190	167	7,05·10 ⁻⁶				
¹⁰³ / ₃₆₅	238	50	8,10.10-\$	368	190	435	1,25·10 ⁻⁵				
	130-2	4	1,65·10∱	375	190	305	1,55.10-5				
14015	200 2	1,4	7,9203 Q 0 ⁻⁴	392	190	95	4,60.10-5				
_ 14025 	238-	0,5	6,44·10 ⁻³	410	190	20	2,05·10 ⁻⁴				
	175	4	$2,83 \cdot 10^{-4}$	410		20	3,48·10 ⁻⁴				
ω ⁶ 10 ⁻¹			190		ивации Q _{эф} её учения () и		омпонент (2) без лучения (—)				

10 170 10-5 150 10^{-7} 2,4 2,8 3,2 3,6 4

3.2. Определение коэффициентов анизотропии При изучении анизотропии ползучести облу-

чаемых труб исходили из того, что согласно её текстурным моделям (см., например, [8]), коэффициенты G, H и F должны быть разными при реализации различных механизмов деформирования.

Диффузионная ползучесть Набарро-Херринга и Кобле и линейная компонента радиационной ползучести обусловлена диффузионным массопереносом. Можно ожидать, что для них будет применима одна и та же группа коэффициентов анизотропии. Определить их по результатам внереакторных испытаний практически невозможно из-за малых скоростей диффузионной ползучести.

Скорость линейной компоненты радиационной ползучести значительно больше, но не настолько, чтобы можно было использовать первую методику изучения анизотропии. Надёжное определение коэффициентов G и H с помощью выражения (2) по

Рис. 3. Температурные зависимости эквивалентной скорости ползучести $\dot{\varepsilon}_{_{_{_{_{3KB}}}}}$ (1) и эффективной энер-

результатам испытаний на растяжение в реакторе РБТ-6 предварительно облучённых образцов оказалось возможным только при таких напряжениях, когда преобладает вклад степенных компонент ползучести. Получаемая при этом величина G (0,58-0,56) оказалась несколько меньше определённой без облучения.

Снижение G может быть следствием влияния линейной компоненты ползучести. В таком случае для неё указанный коэффициент должен быть меньше, чем для степенных компонент.

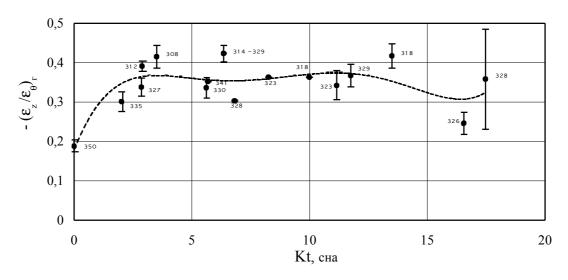
Поскольку модуль В и, следовательно, коэффициент A = BK в силовой зависимости радиационной линейной ползучести известны, для определения её коэффициентов анизотропии использовали вторую методику.

Для этих целей были выбраны результаты испытаний в реакторе БОР-60 газонаполненных образцов при минимальных напряжениях σ_{θ} (до 100 МПа) и температурах (в основном не более 315°С). Образцы были испытаны до доз повреждаемости 2,86... 11,15 сна. Измерения их размеров показали, что средние значения $(\epsilon_z)_r/(K\sigma_{\theta})$ и $(\epsilon_{\theta})_r/(K\sigma_{\theta})$ равны соответственно $-(0.43\pm0.016)$ и 0.88 ± 0.05 . Учитывая, что $B=(1.10\pm0.20)\cdot10^{-4}$ МПа $^{-1}$ сна $^{-1}$, из выражений (4) и (5) получили: $G=0.534\pm0.007$; $H=0.466\pm0.007$; $F=-(0.187\pm0.012)$.

Можно предположить, что анизотропия степенных компонент ползучести под облучением, по крайней мере, при относительно низких дозах облучения будет такой же, как без облучения.

Это предположение подтверждают результаты испытаний газонаполненных образцов в реакторах БОР-60 и РБТ-6 в широком диапазоне температур и напряжений.

На рис.4 приведены отношения деформаций ползучести ($\epsilon_z/\epsilon_\theta$), (с исключением вклада радиационного роста) для образцов, испытанных в реакторе БОР-60 для разных доз облучения. На установившейся стадии ползучести такие отношения эквивалентны отношениям скоростей $\frac{\epsilon}{z}/\frac{\xi}{\theta}$ и могут


быть использованы для расчёта коэффициента F по первой методике.

Каждая точка до доз 6...6,5 сна получена усреднением результатов по 5...6 образцам, у которых напряжение σ_{θ} задавалось в диапазоне 85...190 МПа. Рядом с точкой указана температура испытаний. Чем меньше температура, тем больше абсолютное значение отношения ($\varepsilon_z/\varepsilon_{\theta}$)_г и тем ближе оно к величине, характерной для линейной компоненты ползучести (-(0,430 ± 0,013)). Чем больше температура, тем оно ближе к измеренному без облучения значению ($\varepsilon_z/\varepsilon_{\theta}$)_г (-(0,188 ± 0,016)).

При больших дозах ситуация усложнена тем, что после измерений размеров часть образцов с низкими значениями σ_{θ} была выгружена, а дальнейшие испытания оставшихся образцов проводились уже при других температурах (после доз 6,5 сна возле точек указана максимальная температура испытаний). С учётом этого прослеживается также тенденция снижения абсолютного значения отношения компонент $\epsilon_z/\epsilon_{\theta}$ с ростом температуры и напряжения.

Часть образцов, испытанных в реакторе БОР-60 при температуре 327 °C и напряжениях σ_{θ} = 86...149 МПа, была в дальнейшем испытана в реакторе РБТ-6 при температуре 375 °C, а следовательно, и больших напряжениях (93...161 МПа). Вследствие этого абсолютные значения $\epsilon_{z}/\epsilon_{\theta}$ уменьшились и вплотную приблизились к характерной для необлучаемых образцов величине (табл.2), что связано с преобладающим вкладом в деформацию степенных компонент ползучести.

Применение для них коэффициентов анизотропии, определённых для внереакторных испытаний, оправдано до доз 10...15 сна. При больших дозах, как явствует из зарубежных данных [1, 2, 9, 10], на ползучесть сплавов циркония начинают влиять структурные процессы, связанные с увеличением плотности \overline{C} -дислокаций и накоплением вакансионных петель в базисных плоскостях.

3.3. Особенности ползучести при больших скоростях радиационной повреждаемо-

Физические представления о механизмах линейной радиационной ползучести [11, 12] и экспериментальные результаты, полученные при внутриреакторных испытаниях материалов разного класса и изделий из них, дают основания утверждать, что установившаяся стадия процесса в реакторах РБТ-6 ($K=10^{-4}$ сна/ч) и БОР-60 ($K=5\cdot10^{-4}\dots2\cdot10^{-3}$ сна/ч) будет описываться выражением (9) с постоянным модулем В и одними и теми же коэффициентами анизотро-

Рис. 4. Зависимость усреднённых соотношений ($\varepsilon_z / \varepsilon_\theta$) г от дозы повреждаемости Kt для испытанных в реакторе БОР-60 газонаполненных образцов

В ходе указанных испытаний нами получен представительный массив данных (более 200 точек) по деформациям ε_z и ε_θ при различных температурах (308...340 °C), напряжениях (85...190 МПа) и дозах облучения (1,71...21,5 сна). К анализу и обработке были привлечены и результаты ранее проведённых испытаний в реакторе БОР-60 газонаполненных образцов с периодическим измерением ε_z [13]. Они расширяют диапазон доз до 30 сна.

Характерной особенностью перечисленных результатов является проявление нелинейного характера силовой зависимости ε_z и ε_θ , начиная с напряжений $\sigma_\theta = 115...120$ МПа. Этот факт приведен в табл.3 на нескольких примерах, взятых для разных доз облучения: отношения $\varepsilon_z/\sigma_\theta$ и $\varepsilon_\theta/\sigma_\theta$ увеличиваются с ростом напряжения.

Напомним, что при аналогичных температурах степенная ползучесть у испытываемых в реакторе РБТ-6 образцов становилась заметной лишь тогда, когда эквивалентное напряжение было больше 200 МПа.

Если считать газонаполненные образцы тонкостенными, то для них в соответствии с системой уравнений (1)

$$\sigma_{AKB} = \sigma_{\theta} \cdot \sqrt{F + 0.25} = \sigma_{\theta} \cdot \sqrt{0.28 + 0.25} = 0.73\sigma_{\theta}$$
. (9)

Следовательно, появление нелинейности зависимости $\varepsilon_{\theta}(\sigma_{\theta})$ и $\varepsilon_{z}(\sigma_{\theta})$ можно было бы ожидать лишь при напряжениях σ_{θ} , больших 200/0,73=274 МПа. На самом деле, она наблюдается значительно раньше и связана с большими скоростями повреждаемости К.

Описанный эффект интерпретирован следующим образом. При малых значениях К влияние облучения на степенную ползучесть сводится в основном к радиационному упрочнению, т.е. к снижению скорости ползучести. При больших К радиационные диффузионно-активные дефекты ускоряют движение дислокаций, а следовательно, и ползучесть. Не меняя сам механизм дислокационной ползучести, они придают ей специфику, которую можно отразить новой степенной компонентой радиационного происхождения.

Такая интерпретация согласуется с развитыми Николсом и Даффином [14] представлениями о влиянии потока радиационных точечных дефектов на скорость переползания дислокационного диполя

пии. Представления о механизмах степенной ползучести в условиях облучения развиты в значительно меньшей степени, что не позволяет однозначно прогнозировать её поведение при больших скоростях радиационной повреждаемости.

Отмеченный аспект проблемы можно исследовать, воспользовавшись результатами испытаний в реакторе БОР-60 газонаполненных образцов (испытания на растяжение в нём не производятся из-за сложности их реализации). Такая возможность обеспечена прояснением вопроса об анизотропии различных компонент ползучести.

через препятствия. Это влияние отсутствует при малых К. Начиная с некоторого порогового его значения обе краевые дислокации начинают обходить препятствия, двигаясь не в противоположном направлении, а в одну сторону. Дальнейший рост К приводит к пропорциональному увеличению скорости ползучести.

Статистическая обработка совокупного массива данных по ползучести газонаполненных трубок в условиях реактора БОР-60 с учётом анизотропии показала, что эквивалентная скорость $\,^{\xi}_{\,\,p,c}$ степенной радиационной ползучести действительно пропорциональна скорости повреждаемости $\,$ К, показатель степени в силовой зависимости равен 4, а энергия активации $\,$ Q = $\,$ 88 к $\,$ К $\,$ Дж $\,$ Моль.

Кроме того, особенности дозовых зависимостей деформаций ϵ_z и ϵ_θ описываются оптимальным образом, если допустить, что коэффициенты анизотропии степенных компонент ползучести при больших дозах изменяются. Так, при дозах 20 и 30 сна коэффициенты G, H и F равны соответственно 0,54; 0,46; 0,62 и 0,50; 0,50; 0,93.

Согласно текстурной модели [8] такая эволюция анизотропии может быть связана с ростом вклада в ползучесть скольжения дислокаций в базисных плоскостях ГПУ-решётки твёрдого раствора.

ЗАКЛЮЧЕНИЕ

В работе представлены результаты внереакторных и внутриреакторных испытаний на ползучесть оболочечных труб из сплава Zr-1%Nb, проведённых в целях исследования её закономерностей на установившейся стадии при условиях, характерных для оболочек твэлов существующих и разрабатываемых реакторов с водяным охлаждением.

Оригинальная методология решения указанной задачи предусматривала изучение термических и радиационных компонент ползучести в объёме, достаточном для описания её при различных видах нагружения.

Основные результаты работы таковы:

1. Изучено поведение эквивалентной скорости установившейся внереакторной ползучести и определены коэффициенты анизотропии для её степенных компонент.

- 2. Изучена линейная радиационная компонента ползучести; определены модуль радиационной ползучести и коэффициенты анизотропии.
- 3. Показано, что эквивалентная скорость степенных термических компонент ползуче-

сти под облучением, превалирующих в области умеренных и больших напряжений при малых скоростях радиационной повреждаемости, может быть описана так же, как и без облучения, но с учётом радиационного упрочнения.

Таблица 2

Ползучесть в условиях облучения в реакторе РБТ-6 газонаполненных образцов после их предварительных испытаний в реакторе БОР-60

Услов	вия испы		БОР-60 і тытаний	и состояни	ие после ис-	Условия и результаты испытаний в РБТ-6				
T, °C	kt, сна	σ _θ , ΜΠα	$\epsilon_{\scriptscriptstyle{ extstyle \theta}}, \ \%$	$-\varepsilon_z$, $\frac{0}{0}$	$-(\epsilon_z/\epsilon_{\theta})_r$	T, °C	σ _θ , ΜΠα	$\Delta \epsilon_{\scriptscriptstyle heta}$, $^{\circ}_{\circ}$	$-\Delta \varepsilon_z$, $\frac{0}{0}$	$-\left(\frac{\Delta\;\epsilon\;_{\mathbf{z}}}{\Delta\;\epsilon\;_{\emptyset}}\right)_{\Gamma}$
		86	0,22	0,100	0,455		93	0,25	0,053	0,21
327	2,86	149	0,63	0,211	0,335	375	161	0,38	0,090	0,24
		149	0,63	0,201	0,319		161	0,39	0,074	0,19

Таблица 3

Приведённые тангенциальная ε_{θ} / σ_{θ} и осевая ε_{z} / σ_{θ} деформации газонаполненных трубчатых образцов при разных условиях испытания в реакторе БОР-60

oopusides fight pushess yettestissis in the peak tope sor ou									
kt, сна	T, °C	σ _θ , МПа	$\epsilon_{\theta}/\sigma_{\theta}$, M $\Pi a^{\text{-}1}$ $\times 10^{\text{-}5}$	$\begin{array}{c} -\epsilon_z/\sigma_\theta \ , \\ M\Pi a^{\text{-}1} \\ \times 10^{\text{-}5} \end{array}$	kt, сна	T, °C	σ _θ , МПа	$\epsilon_{\theta}/\sigma_{\theta}$, M $\Pi a^{\text{-}1}$ $ imes 10^{\text{-}5}$	$\begin{array}{c} -\epsilon_z/\sigma_\theta,\\ M\Pi a^{\text{-}1}\\ \times 10^{\text{-}5} \end{array}$
		190	4,47	0,968	(2.4	317	111	7,09	3,022
		188	4,20	0,856	6,24	334	86	5,55	2,636
1,71	339	190	3,84	0,637	11,24	318 332	183	17,60	4,224
	337	151	3,11	0,921			158	13,56	3,918
2,02		126	3,33	0,913			146	13,58	4,321
		101	2,57	0,901			133	13,63	4,337
		188	5,90	1,973			98	11,22	3,776
		188	5,85	2,011			171	18,14	5,198
2,86	333	176	4,66	1,540		313	146	18,16	6,928
2,80	333	150	4,20	1,433	13,44	313	133	16,85	6,622
		150	4,20	1,353		327	128	15,63	4,727
		87	2,53	1,195		321	110	11,86	4,281
	318	181	4,97	1,773	16,49	317	186	33,55	9,419
2,92		157	3,76	1,548		331	161	30,00	8,925
		144	3,19	1,222		334	136	23,09	9,301
		132	3,03	1,280	21,49	318-	182	49,42	7,348
		97	2,27	1,010		334	158	46,12	9,136
6,24	317	161	8,76	3,199	6,24	334	136	6,03	2,243

- При больших скоростях радиационной повреждаемости К появляется степенная радиационная компонента ползучести, скорость которой пропорциональна К. Данная компонента отличается от термических по параметрам температурно-силовой зависимости.
- 5. Для всех степенных компонент ползучести при облучении до доз 10...15 сна применимы те же коэффициенты анизотропии, что и без облучения. Однако есть основания считать, что при больших дозах они изменяются.

ЛИТЕРАТУРА

- V. Fidleris. Summary of experimental resalts on in-reactor creep and irradiation growth of zirconium alloys // Atomic Energi Review. 1975, v. 13, p. 51.
- 2. V. Fidleris. The irradiation creep and growth phenomena // J. Nukl. Mater. 1988, v. 159, p. 22-42.
- 3. А.Я. Рогозянов, Г.П. Кобылянский. Внереакторная ползучесть сплава Zr-1% Nb в изделиях для атомной энергетики // Сб .докладов 5-й Межотраслевой конференции по реакторному материаловедению. Димитровград, 1998, т.3, с.164-195.

- 4. А.Я. Рогозянов и др. Исследование неуста-новившейся стадии и анизотропии сплава Zr—1%Nb // Сб. докладов 4-ой Межсотраслевой конференции по реакторному материаловедению. Димитровград, 1996, т. 2, с. 134-147.
- 5. В.П. Воейков, А.М. Каптельцев, Д.А. Озерецкий. Исследование связи анизотропии ползучести оболочечных труб из сплава Zr–1%Nb с их текс-турой при различных схемах нагружения // Вопросы атомной науки и техники. Серия: "Атомное материаловедение" 1997, вып.1(24)., с. 25-35.
- Г.Дж. Фрост, М.Ф. Эшби. Карты механизмов деформирования. Челябинск: «Металлургия», 1989.
- К. Кухаржова, А. Орлова, Й. Чадек. Характеристики ползучести и структура трубчатых образцов из сплава Zr 1% Nb в интервале температур 573-1173 К // Вопросы атомной науки и техники. Серия: "Атомное материаловедение". 1988, вып. 2(27), с. 66-73.
- 8. Ю.Н. Книжников, В.Н. Кузнецов, В.В. Скворцов. Текстурная модель для определения параметров анизотропии циркониевых сплавов // Вопросы атомной науки и техники. Серия: "Физика радиационных повреждений

- *и радиационное материаловедение*". 1985, вып.3(36), с. 51-62.
- 9. R.A. Holt, R.W. Gilbert. (C) Component dislocations in annealed Zircaloy irradiated at about 570 K // J. Nukl. Mater. 1985, v.137, p.185-189.
- 10.R.A. Holt. Mechanisms of irradiation growth of alpha-zirconium alloys // J. Nukl. Mater. 1988, v.159, p. 310-338.
- 11.J.R. Matthews, M.W. Finnis. Irradiation creep models an over view // J. Nucl. Mater. 1988, v. 159, p. 257-285.
- 12.В.А. Бородин, А.И. Рязанов. Физические механизмы радиационной ползучести металлов // Труды Международной конференции по радиационному материаловедению. Харьков, 1990, т. 3, с. 3-26.
- 13.Г.П. Кобылянский, А.Е. Новосёлов. *Радиа- ционная стойкость циркония и сплавов на его основе:* Справочные материалы по реакторному материаловедению. Димитровград: ГНЦ РФ НИИАР, 1996.
- 14. W.J. Daffin, F.A. Nichols. The effect on irradiation on diffusion controlled creep processes // *J. Nucl. Mater.* 1972-73, v. 45, №4, p. 302-316.