УДК 621.317+621.372.821

А. И. Горошко, В. К. Киселев

ЗАГРАЖДАЮЩИЙ ФИЛЬТР ПОБОЧНЫХ ГИБРИДНЫХ МОД ПОЛОГО ДИЭЛЕКТРИЧЕСКОГО ВОЛНОВОДА СУБМИЛЛИМЕТРОВОГО ДИАПАЗОНА ДЛИН ВОЛН

Институт радиофизики и электроники им. А. Я. Усикова НАН Украины 12, ул. Ак. Проскуры, Харьков, 61085, Украина E-mail: a goroshko@ire.kharkov.ua

Проведен анализ и экспериментальное исследование макета заграждающего фильтра гибридных мод HE_{12} и HE_{-11+31} в круглом полом диэлектрическом волноводе. Фильтр образован отрезком волновода, ограниченным двумя плоскими одномерными проволочными решетками. Фильтр позволяет обеспечить подавление побочных мод до 15...20 дБ при затухании рабочей моды HE_{11} до 3 дБ на частоте 300 ГГц в волноводе диаметром 20 мм. Ил. 5. Библиогр.: 8 назв.

Ключевые слова: субмм диапазон длин волн, полый диэлектрический волновод, подавление гибридных мод.

Рабочей модой в круглых полых диэлектрических волноводах (ПДВ) [1–5] является линейно поляризованная гибридная мода HE_{11} . Наряду с ней, при запитке волновода, а также на изгибах, изломах, разрывах волновода возбуждаются побочные линейно поляризованные гибридные моды HE_{12} и HE_{-11+31} [3]. Характер электрического поля в поперечном сечении волновода диаметром 2a с радиальной координатой r для указанных мод представлен на рис. 1.

Рис. 1. Линии электрического поля основных гибридных мод $HE_{11}(a)$, $HE_{12}(b)$ и комбинированной гибридной моды $HE_{-11+31}(b)$

Наличие в волноводе побочных мод приводит к ошибкам в измерениях, искажениям диаграммы направленности излучения из волновода и т. д.

Затухание побочных мод HE_{12} и HE_{-11+31} в ПДВ незначительно превышает зату-

хание рабочей моды HE_{11} . Это обусловлено тем, что коэффициент затухания α_{nm} гибридных мод HE_{nm} в ПДВ определяется выражением [1]

$$\alpha_{nm} = \left(\frac{U_{nm}}{2\pi}\right)^2 \frac{\lambda^2}{a^3} \operatorname{Re} \frac{1/2(\varepsilon - 1)}{\sqrt{\varepsilon - 1}},\tag{1}$$

где $U_{nm} - m$ -й корень уравнения $J_{n-1}(U_{nm}) = 0$; $J_{n-1} - функция Бесселя; <math>\lambda - длина$ волны в свободном пространстве; a - радиус волновода; Re – действительная часть; $\varepsilon = \varepsilon' + i\varepsilon''$ – комплексная диэлектрическая проницаемость стенки волновода.

Порядок величины коэффициента затухания определяется сомножителем λ^2/a^3 , который для квазиоптических волноводов много меньше 1. Разнятся коэффициенты затухания гибридных мод сомножителями $\left(\frac{U_{nm}}{2\pi}\right)^2$, которые мало отличаются для рабочей моды $HE_{11}(U_{11} = 2,405)$ и для побочных мод $HE_{12}(U_{12} = 5,52), HE_{-11+31}(U_{31} = 5,136)$. Для значительного подавления побочных мод за счет самофильтрации волновода потребуется прямолинейный регулярный участок последнего большой длины, поэтому возникает необходимость в устройстве, которое решало бы эту задачу при малой длине волновода.

Как правило, все три моды (HE_{11} , HE_{12}, HE_{-11+31}) поляризованы в одной плоскости. Если побочные моды возникнут с ориентацией вектора \vec{E} в плоскости, ортогональной к плоскости поляризации рабочей моды, их легко устранить из волновода с помощью, например, одномерной проволочной решетки, проволочки которой параллельны вектору \vec{E} .

В многомодовых металлических волноводах для устранения побочных мод широко

ISSN 1028-821Х Радіофізика та електроніка, 2011, том 2(16), № 1

применяются методы создания в стенке волновода щелей, пересекающих линии тока побочных мод и не влияющих на рабочую моду. Для решения нашей задачи такие методы не подходят.

Исследуем возможность подавления указанных побочных мод на 15...20 дБ, используя различие фазовых скоростей мод в волноводе. С этой целью рассмотрим резонатор, образованный отрезком волновода, который ограничен двумя плоскими одномерными проволочными решетками, плоскости которых параллельны друг другу, а проволочки ориентированы вдоль плоскости поляризации вектора *E* моды и перпендикулярны к оси волновода.

Коэффициент прохождения СВЧ-мощности через резонатор в момент резонанса, как известно [6], равен

$$T_{\rm pe3} = 4Q_{\rm H}^2 / Q_{\rm cB}^2 \,, \tag{2}$$

где $Q_{\rm H}$ – нагруженная добротность резонатора; $Q_{\rm CB}$ – добротность связи. Для исследуемого резонатора аналитические выражения для этих добротностей имеют следующий вид

$$Q_{\rm H} = \pi q \, \frac{\left(\frac{\lambda_{nm}}{\lambda}\right)^2}{\left(e^{\alpha_{nm}q\lambda_{nm}} - 1\right) + T + A};\tag{3}$$

$$Q_{\rm CB} = 2\pi \frac{q}{T} (\frac{\lambda_{nm}}{\lambda})^2, \qquad (4)$$

где λ_{nm} – длина волны в волноводе; q – число полуволн $\lambda_{nm}/2$, укладывающихся на длине резонатора; T – коэффициент прохождения одиночной решетки; A – коэффициент затухания в проволочках решетки; $e^{\alpha_{nm}q\lambda_{nm}} - 1$ – затухание в стенках волновода на длине резонатора. Необходимость учета затухания в стенках волновода обусловлена тем, что при длине резонатора (100–200) λ_{nm} оно становится соизмеримым с затуханием в проволочках решетки.

Для резонатора, выполненного на основе ПДВ, коэффициент прохождения по мощности через резонатор моды HE_{nm} при резонансе, с учетом затухания в стенках волновода, приобретает вид

$$T_{\rm pe3} = \frac{T^2}{\left[(e^{\alpha_{nm}q\lambda_{nm}} - 1) + T + A \right]^2}.$$
 (5)

При произвольной длине резонатора δ коэффициент прохождения по мощности $T_{(\delta, nm)}$ моды HE_{nm} , с учетом ее коэффициента затухания α_{nm} , определяется выражением

$$T_{(\delta,nm)} =$$

=

$$=\frac{T^2 e^{-2\delta\alpha_{nm}}}{(1-\operatorname{Re}^{-2\delta\alpha_{nm}})^2+4\operatorname{Re}^{-2\delta\alpha_{nm}}\sin^2[\delta\beta_{nm}-(\varphi-\pi)]},^{(6)}$$

где $R^{1/2}e^{i\varphi}$ – комплексная амплитуда коэффициента отражения одиночной решетки; φ – фаза волны при отражении от решетки; T – коэффициент прохождения одиночной решетки; β_{nm} – фазовая постоянная моды HE_{nm} .

Прохождение СВЧ-энергии через резонатор $T_{(\delta nm)}$ максимально при длине резонатора

$$\delta_{\max} = \frac{\lambda_{nm}}{2} (q + \frac{\varphi - \pi}{\pi}), \tag{7}$$

где λ_{nm} – длина волны моды HE_{nm} в волноводе; q – число полуволн $\lambda_{nm}/2$ на длине резонатора.

Минимальное прохождение $T_{(\delta, nm)}$ наблюдается при длине резонатора

$$\delta_{\min} = \frac{\lambda_{nm}}{4} [(2q-1) + \frac{2(\varphi - \pi)}{\pi}].$$
 (8)

Относительное подавление (развязка) χ_{max} побочной моды HE_{nm} , против уровня рабочей моды HE_{11} , будет максимальным, когда длина резонатора будет одновременно соответствовать условию (7) для HE_{11} и условию (8) для HE_{nm} :

$$\chi_{\max} = \frac{T_{\max(\delta,11)}}{T_{\min(\delta,nm)}} = e^{2\delta(\alpha_{nm} - \alpha_{11})} \times \left[\frac{1 + \operatorname{Re}^{-2\delta\alpha_{nm}}}{1 - \operatorname{Re}^{-2\delta\alpha_{11}}}\right]^2.$$
(9)

Коэффициенты *T* и *R* решеток для рабочей и указанных побочных мод одинаковы. Первый сомножитель в (9) определяется самофильтрацией волновода, а второй – резонансными свойствами фильтра.

Коэффициент прохождения T одномерной решетки с шагом g, много меньшим длины рабочей волны λ , образованной проволочками диаметром 2b, при параллельно поляризованном облучении и $g/b \ge 8$ в резонаторе интерферометра Фабри-Перо исследовался в работе [7]. В субмм диапазоне отношение g/b может быть близким к пределу применимости соотношений, поэтому воспользуемся исходным выражением для T

$$T = 1 - R = \sin^2 \phi, \tag{10}$$

где $\phi = \pi - \arctan 2wg/\lambda$; $w = \ln(g/2\pi b)$.

Коэффициент затухания *А* в проволочках одномерной решетки определяется выражением [7]

$$A = \frac{g}{\pi b} R(\frac{c}{\sigma \lambda})^{1/2},\tag{11}$$

где σ – проводимость материала проволочек; c – скорость света; R – коэффициент отражения решетки.

Расчетные параметры решетки из вольфрамовых проволочек диаметром $2b = 20\mu$ с шагом $g = 200\mu$ на волне $\lambda = 1$ мм составили: T = 0,2147, R = 0,7786 и A = 0,0067. Экспериментально измеренный коэффициент прохождения T на волне $\lambda = 0,986$ мм равен 0,205. Снижение его против расчетного можно объяснить остатками поглощающего покрытия на проволочках из вольфрама. Разность измеренного и вычисленого T следует отнести на увеличение A до 0,017.

Следует отметить, что расчеты коэффициента прохождения решетки T по формулам Вайнштейна [8] дали хорошее совпадение с полученными по формулам [7]: амплитуды – с точностью до 0,1 %, фазы при отражении – до 2,5 %.

Экспериментальные исследования проведены на макете фильтра, который обеспечивает возможность ступенчатого и плавного изменения длины резонатора. Одна из решеток закреплена перпендикулярно оси волновода на подвижном цилиндре, соединенном с механизмом отсчета величины перемещения. Механизм юстировки положения второй решетки относительно первой позволяет обеспечить параллельность их плоскостей и осей проволочек.

На рис. 2 представлены результаты экспериментально измеренных коэффициентов прохождения СВЧ-мощности рабочей моды HE_{11} и побочных HE_{12} и HE_{-11+31} через резонатор при резонансе и расчетные значения для моды HE_{11} (при резонансе) в функции длины резонатора на волне $\lambda = 0,986$ мм в ПДВ диаметром 20 мм.

Рис. 2. Зависимость коэффициента прохождения через резонатор при резонансе от длины резонатора: … – расчет для моды HE_{11} по (6); – – – по (5); эксперимент: × – мода HE_{11} ; Δ – мода HE_{12} ; \Box – мода HE_{-11+31}

При расчетах использовались экспериментально уточненные значения параметров решетки: T = 0,205, A = 0,017 и затухания моды $HE_{11} \alpha_{11} = 2,3017 \cdot 10^{-3} \text{ дБ/мм}$, против расчетного значения равного $\alpha_{11} = 1,8414 \cdot 10^{-3} \text{ дБ/мм}$. Увеличение затухания связано с наличием разрывов волновода в местах размещения решеток. Расчеты по формулам (5) и (6) дают близкие результаты. Экспериментально измеренные значения коэффициента прохождения моды HE_{11} хорошо согласуются с расчетом. Большие значения T_{pe3} для рабочей моды HE_{11} (малые потери) открывают перспективы для создания эффективного фильтра.

Экспериментальные результаты исследования селективных свойств резонатора на базе отрезка ПДВ представлены на рис. 3

Рис. 3. Зависимость нагруженной добротности резонатора от длины резонатора: — – расчет по (3) для моды HE_{11} ; эксперимент: × – мода HE_{11} ; Δ – мода HE_{12} ; \Box – мода HE_{-11+31}

Экспериментальные измерения нагруженной добротности подтверждают наличие у такого резонатора достаточно высоких значений добротности не только для рабочей моды HE_{1} , но и для побочных мод HE_{12} и HE_{-11+31} .

При экспериментальном исследовании относительного подавления χ побочной моды HE_{nm} резонатор настраивался на максимальное прохождение рабочей моды HE_{11} . Затем на резонатор подавался большой уровень побочной моды. Величина χ определялась как разность затухания побочной и рабочей моды в децибелах. Результаты измерений представлены на рис. 4. Расчетные кривые для χ получены с помощью выражения (9).

Результаты экспериментальных измерений свидетельствуют о возможности реализовать относительное подавление побочных мод на 15...20 дБ. Разрывы волновода в резонаторе при малых длинах резонатора приводят к более сильному росту потерь побочных модов и к экспериментальным значениям развязки выше расчетных. При увеличении длины резонатора добротность резонатора для побочных мод падает быстрее, чем у рабочей моды, и относительное подавление побочных мод снижается против расчетной величины.

Рис. 4. Относительное подавление побочной моды χ в зависимости от длины резонатора. Расчет: — – мода HE_{12} ; – – – мода HE_{-11+31} ; эксперимент: Δ – мода HE_{12} ; \Box – мода HE_{-11+31}

На практике при корректном возбуждении рабочей моды и принятии практических мер по снижению неоднородностей в волноводе уровень возбуждения побочных мод может составять единицы процентов и можно ограничиться существенно меньшим значением уровня подавления побочных мод. Если снизить требуемый уровень подавления побочных мод до 10 дБ, то воспользовавшись решетками с параметрами $2b = 20\mu$, $g = 300\mu$ в волноводе диаметром 20 мм на волне $\lambda = 1$ мм, можно уменьшить затухание рабочей моды до 0,8 дБ.

Исследование диапазонных свойств фильтра проводилось в диапазоне длин волн 0,8...1,2 мм. На рис. 5 представлены χ_{max} – максимальные измеренные значения относительного подавления побочных мод HE_{12} и HE_{-11+31} , против затухания рабочей моды HE_{11} .

Рис. 5. Диапазонные свойства фильтра. Эксперимент:
 Δ – мода $HE_{12};$ \Box – мода HE_{-11+31}

Выводы. Проведенные исследования показывают, что проходной резонатор, образованный двумя одномерными проволочными решетками, ограничивающими отрезок регулярного ПДВ, позволяет обеспечить относительное подавление побочных мод *HE*₁₂ и *HE*₋₁₁₊₃₁ на 15...20 дБ, при затухании рабочей моды HE_{11} , не превышающем 3 дБ.

- Marcatili E. A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers / E. A. Marcatili, R. A. Schmeltzer // The Bell System Technical Journal. – 1964. – <u>43</u>, N 4. – P. 1783–1809.
- Snitzer E. Cylindrical dielectric waveguide modes / E. Snitzer // J. Opt. Soc. Am. – 1961. – <u>51</u>, N 5. – P. 491–498.
- Горошко А. И. Исследование полого диэлектрического лучевода миллиметрового и субмиллиметрового диапазонов волн / А. И. Горошко, Е. М. Кулешов // Радиотехника: науч.-техн. сб. / Харьков. гос. ун-т. – Х., 1972. – Вып. 21. – С. 215–219.
- А. с. 302054 СССР, МПК Н 01 3/00. Диэлектрический лучевод субмиллиметрового диапазона волн / А. Н. Ахиезер, А. И. Горошко, Б. Н. Князьков и др. – № 1380503/26-9; заявл. 28.11.1969; опубл. 3.02.71, Бюл. № 8. – 1972. – 12 с.
- Киселев В. К. Физическое моделирование электромагнитного рассеяния в квазиоптических направляющих структурах терагерцевого диапазона / В. К. Киселев // Радиофизика и электрон.: сб. науч. тр. / Ин-т радиофизики и электрон. НАН Украины. – Х., 2008. – <u>13</u>, спец. вып. – С. 359–376.
- Альтман Дж. Устройства СВЧ / Дж. Альтман; пер. с англ. под ред. И. В. Лебедева. – М.: Мир, 1968. – 487 с.
- Ulrich R. Tunable submillimeter interferometers of the Fabry-Perot type / R. Ulrich, K. F. Renk, L. Genzel // IEEE Trans. Microwave Theory Tech. – 1963. – <u>MTT-11</u>, N 5. – P. 363–371.
- Вайнштейн Л. А. К электродинамической теории решеток / Л. А. Вайнштейн // Электроника больших мощностей. – № 2. – 1963. – С. 26–56.

A. I. Goroshko, V. K. Kiseliov

SUBMILLIMETRIC-WAVE RANGE REJECTION FILTER OF LATERAL HYBRID MODES IN HOLLOW DIELECTRIC WAVEGUIDE

The breadboard modes of a rejection a circular hollow dielectric waveguide has been analyzed and experimentally studied. The filter is a waveguide segment bounded by two planar one-dimensional wire grating. This type of filter suppresses spurious modes down to 15...20 dB, us the operating HE_{11} mode gets damped down to 3 dB at 300 GHz in a waveguide of diameter 20 mm.

Key words: submillimetric-wave range, hollow dielectric waveguide, hybrid-mode suppression.

А. І. Горошко, В. К. Кісельов

ЗАГОРОДЖУЮЧИЙ ФІЛЬТР ПОБІЧНИХ ГІБРИДНИХ МОД ПОРОЖНИСТОГО ДІЕЛЕКТРИЧНОГО ХВИЛЕВОДУ СУБМІЛІМЕТРОВОГО ДІАПАЗОНУ ДОВЖИН ХВИЛЬ

Проведено аналіз та експериментальне дослідження макета загороджуючого фільтра гібридних мод HE_{12} і HE_{-11+31} в круглому порожнистому діелектричному хвилеводі. Фільтр утворений відрізком хвилевода, обмеженим двома плоскими одновимірними дротяними решітками. Фільтр дозволяє забезпечити заглушення побічних мод до 15...20 дБ при затуханні робочої моди HE_{11} до 3 дБ на частоті 300 ГГц у хвилеводі діаметром 20 мм.

Ключові слова: субміліметровий діапазон довжин хвиль, порожнистий діелектричний хвилевод, заглушення гібридних мод.

Рукопись поступила 07.12.10 г.