ADVANCED FUSION CYCLES FOR HIGH-BETA MAGNETIC SYSTEMS

A.Yu. Chirkov*, V.I. Khvesyuk

Bauman Moscow State Technical University, 2nd Baumanskaya Str., 5, 105005 Moscow, Russia *E-mail: chirkov@power.bmstu.ru

Power balance analysis of alternative (not D-T) fusion cycles is carried out to find high efficiency and low-radioactivity cycles for fusion reactors based on high-beta magnetic systems, such as field reversed configuration (FRC), spherical tokamak, etc. Cycles based on reactions D-D, D-3He, D-6Li, D-7Be, p-6Li, p-9Be, and p-11B are considered.

PACS: 28.52.-s; 28.52.Av

1. INTRODUCTION

We consider fusion cycles based on the following reactions:

D + D
$$\rightarrow$$
 n(2.45 MeV) + ³He(0.817 MeV)
D + D \rightarrow p(3.02 MeV) + T(1.01 MeV)

(1b)

$$D + T \rightarrow n(14.1 \text{ MeV}) + {}^{4}\text{He}(3.5 \text{ MeV})$$
 (2)

$$D + {}^{3}He \rightarrow p(14.68 \text{ MeV}) + {}^{4}He(3.67 \text{ MeV})$$
 (3)

$$D + {}^{6}Li \rightarrow n(2.958 \text{ MeV}) + {}^{7}Be(0.423 \text{ MeV})$$
 (4a)

$$D + {}^{6}Li \rightarrow n(\sim 0.66 \text{ MeV}) + {}^{3}He + {}^{4}He + 1.794 \text{ MeV} (4b)$$

$$D + {}^{6}Li \rightarrow p(4.397 \text{ MeV}) + {}^{7}Li(0.628 \text{ MeV})$$
 (4c)

$$D + {}^{6}Li \rightarrow p + T + {}^{4}He + 2.257 \text{ MeV}$$

$$D + {}^{6}Li \rightarrow {}^{4}H + {}^{4}H + 2.2371 \text{ MeV}$$
(4d)

$$D + {}^{6}Li \rightarrow {}^{4}He + {}^{4}He + 22.371 \text{ MeV}$$
 (4e)

$$D + {}^{7}Be \rightarrow p + {}^{4}He + {}^{4}He + 16.766 \text{ MeV}$$
 (5)

$$p + {}^{6}Li \rightarrow {}^{3}He(2.3 \text{ MeV}) + {}^{4}He(1.722 \text{ MeV})$$
 (6)

$$p + {}^{9}\text{Be} \rightarrow D + {}^{4}\text{He} + {}^{4}\text{He} + 0.651 \text{ MeV}$$
 (7a)

$$p + {}^{9}\text{Be} \rightarrow {}^{4}\text{He}(1.277 \text{ MeV}) + {}^{6}\text{Li}(0.851 \text{ MeV})$$
 (7b)

$$p + {}^{11}B \rightarrow 3{}^{4}He + 8.681 \text{ MeV}$$
 (8)

In this paper we estimate the potentialities of different cycles using power balance equation. One can characterize the power efficiency by high value of the plasma power gain factor: $Q=P_{\text{fus}}/P_{\text{ext}}>10$ (P_{fus} is the fusion power, P_{ext} is the required power of external heating). In Sec. 2 burning conditions and simple power balance are studied. Most preferable advanced fusion cycles for energy production in the magnetic reactor appear to be D- 3 He cycles with 3 He production. Calculated parameters of low-radioactivity D- 3 He magnetic fusion reactors are presented in Sec. 3.

2. IGNITION AND POWER BALANCE

Under ideal conditions the burn of the fusion plasma with given Q value is characterised by the criterion

$$n\tau T = \frac{\frac{3}{2} k \left(\sum_{i} n_{i} T_{i} + n_{e} T_{e} \right)^{2}}{\left(1 + Q^{-1} \right) P_{\text{fus}} - P_{\text{br}} - P_{\text{n}}},$$
(9)

where k is the Boltzmann constant, n is the total density of fusion ions and electrons, τ is the energy confinement time $(\tau = \tau_E)$, $T = (n_i T_i + n_e T_e)/n$, T_i is the ion temperature, T_e is the electron temperature, $P_{\rm br}$ is the bremsstrahlung power, and $P_{\rm n}$ in the neutron power. Limit case $Q \rightarrow \infty$ corresponds to the ignition regime. In the calculation of n

 τT criterion we assumed, that $T_e=T_i=T$. Reaction rates are taken from Ref. [1]. For bremsstrahlung losses the results of numerical calculations [2, 3] are used, which takes into account of quantum and relativistic effects.

Important parameters of fusion cycle are neutron yield $\xi_n = P_n/P_{\rm fus}$, and relative bremsstrahlung losses $\xi_{\rm br} = P_{\rm br}/P_{\rm fus}$. Results of calculation of the main parameters of different fusion cycles are presented in Table 1. The first two elements in the cycle designations indicate the main reaction, then, the main reaction products used as the secondary fuel within the catalysed cycles are shown. For example, D-D means that the reactions (1), (2) only are taken into account; D-D-T, the reactions (1)-(3); D-D-³He-T, the reactions (1)-(4) etc.

The analysis of the power efficiency of fuel cycles for the magnetic fusion reactor is based on the local power balance equation

$$P_{\text{fus}} + P_{\text{ext}} = P_{\text{n}} + P_{\text{br}} + P_{\text{s}} + \frac{3}{2} \frac{\sum n_i k T_i + n_e k T_e}{\tau_E} + P_a$$
 (10)

averaged over the plasma volume. In Eq. (10), P_s is the synchrotron loss power (calculated from the Trubnikov formula [4]), P_a is the loss power of fusion products.

Note that advanced fusion cycles in magnetic reactor require high value of $\beta = 2\mu_0 p / B_0^2$ (μ_0 is diamagnetic constant, p is the plasma pressure, B_0 is external confining field) to achieve high power efficiency.

Proton reactions p-6Li, p-9Be, and p-11B, where neutrons are not born, at all, are of a definite interest. Results of the calculation of the most promising proton cycle p-11B are presented in Table 2 for the following ideal conditions: zero densities of ashes (fusion products), $P_s=0$, $P_a=0$, all fusion power and external heating power transferred to ions. For this analysis we use recently obtained p-11B reactivity parameter values [5]. Power flow from ions to electrons calculated using Spitzer's formula, that allows calculate T_e for given T_i . In Table 2, B₀ corresponds to fusion power value $P_{\text{fus}}=5 \text{ MW/m}^3$ at β =1. According our calculations maximal Q value for p- 11 B cycle is $Q_{\text{max}} \approx 3.7$ at $n_{11\text{B}}/n_p = 0.1$. Under the same ideal conditions in p- 6 Li and p- 9 Be cycles $Q_{\text{max}} \approx 0.33$ (at $n_{\text{p}}/n_{6\text{Li}}$, T_i =500 keV, T_e =225 keV) and $Q_{\text{max}}\approx 0.23$ (at $n_p/n_{9\text{Be}}$, T_i =200 keV, T_e =130 keV), respectively. For these cycles $B_0 \approx 14 \text{ T for } P_{\text{fus}} = 5 \text{ MW/m}^3 \text{ and } \beta = 1.$

The highest energy efficiency over all considered advanced cycles can be obtained in D-3He and catalysed

Table 1. Main parameters of different cycles at $T_e = T_i = T$: $D - T(n_D = n_T)$, $D^{-3}He(n_D = n_{3He})$, $D^{-6}Li - ...(n_{6Li}/n_D = 0.3)$, $D^{-7}Be - ...(n_{7Be}/n_D = 0.3)$, $p^{-6}Li(n_{6Li}/n_p = 0.2)$, $p^{-9}Be(n_{9Be}/n_p = 0.1)$, $p^{-11}B(n_{11B}/n_p = 0.1)$.

Cycle	Reactions	T, keV	$n\tau T$, m ⁻³ ×s×keV	$\xi_{\rm n}=P_{\rm n}/P_{\rm fus}$	$\xi_{\rm br} = P_{\rm n}/P_{\rm fus}$	Q _{max} *
D-T	1	14	6.14×10^{21}	0.80	0.013	
D- ³ He	3, 2, 1	70	1.36×10 ²³	0.010.06	0.3	
D-D	2	100	8.84×10 ²⁴ **	0.38	0.65	
D-D-3He-T	2, 3, 1	52	2.17×10 ²³	0.36	0.22	
D-D-T	2, 1	61	1.4×10 ²⁴	0.67	0.23	
D-D- ³ He	2, 3	55	2.58×10 ²³	0.1	0.33	
D-D- ³ He- ³ He	2, 3	56	1.72×10^{23}	0.06	0.28	
D- ⁶ Li	4, 2	170***	_	0.21	2.3	0.66
D- ⁶ Li- ³ He- ⁷ Be-T	4, 2, 3, 5, 1	130	1.10×10^{24}	0.26	0.51	
D-6Li-3He-7Be	4, 2, 3, 5	140	3.01×10^{24}	0.074	0.79	
D- ⁷ Be	5, 2	500***	_	0.04	1.27	3.22
D- ⁷ Be- ³ He-T	5, 2, 3, 1	375	2.53×10 ²⁵	0.18	0.79	
D- ⁷ Be- ³ He	5, 2, 3	375	1.03×10 ²⁵ **	0.04	0.97	
p- ⁶ Li	6	210***	_	0	15.6	0.07
p- ⁹ Be	7	155***	_	0	8.28	0.14
p- ¹¹ B	8	200***	_	0	3.56	0.39

^{*} For anburning fuels (Q<10)

Table 2. Main parameters of $p^{-11}B$ cycle under ideal conditions. $n_{11B}/n_p=0.1$, $P_{fus}=5$ MW/m³, $\beta=1$.

T_i , keV	100	200	250	275	300	350	400	500
T_e , keV	78	127	147	155	164	178	192	216
$n_{\rm p},10^{20}~{\rm m}^{-3}$	7.17	3.79	3.46	3.25	3.21	3.16	3.12	3.10
$n_{\rm e}$, 10^{20} m ⁻³	10.8	5.69	5.19	4.88	4.81	4.74	4.68	4.65
B_0 , T	8.09	7.91	8.31	8.37	8.62	9.11	9.56	10.43
$\xi_{ m br}$	3.29	1.41	1.36	1.27	1.31	1.40	1.48	1.68
Q	0.44	2.44	2.77	3.71	3.22	2.53	2.08	1.47

An attractive feature of D-³He fusion fuel cycle is the possibility of creating low neutron yield fusion reactor with a first wall lifetime 30-40 years, which is due to a low neutron flux to the wall. A serious problem encountered in realisation of the equicomponent D-³He fuel fusion cycle is related to the fact that no commercially significant source of ³He isotope is available on the Earth. One of the possible solutions is the delivery of ³He from the Moon [6].

To solve the problem of ³He supply low-radioactivity cycles with ³He production can be realised [7, 8]. The light helium to deuterium ratio about 0.1–0.3 can be obtained in the cycles with complete ³He self-supply. In Refs. [7, 8] conditions corresponding the low level of a relative neutron power (5% of a total fusion power) where obtained.

3. D-3He CYCLES WITH 3He SELF-SUPPLY IN MAGNETIC REACTORS

In cycles with ³He self supply light helium obtained any way is stored and than, together with deuterium, is injected into the plasma, where the neutronless reaction

- (3) is used for energy production.
 - We have considered the following ³He sources:
- a) the light helium produced in the reaction (1a) and, than, released from the gaseous mixture evacuated by vacuum system;
- b) the tritium produced in the reaction (1b), which is also released from the gaseous mixture and, than, retained for converting into ³He, as a result of the decay: T→³He+e⁻+0.018 MeV;
- c) the decay of the tritium produced in the blanket as a result of the reaction of the type: n+⁶Li→T+⁴He+4.8 MeV, and n+⁷Li→T+⁴He+n-2.47 MeV.

Thus the ³He production is possible due to reaction (1a) and (1b) in the plasma and neutron-lithium reactions in the blanket.

To increase obtainable ³He value in the cycle so-called selective drift pumping [9, 10] of the fusion products due to induced weak magnetic field oscillations can be applied.

In cycles with the selective removal of fusion

^{**} Corresponds to Q=10. (No ignition at $T_e=T_i$)

^{***} Corresponds to Q_{max} at $T_e = T_i$.

products, all charged fusion products, 3 He and T included, are moderated in the plasma releasing their energy to it, the plasma is expected.

Table 3. Parameters	of D-³He reactors with	1 ³ He self-supply.

	D-3He reactors with 3He self-supply				
Parameters	Tandem	FRC	Spherical	Classical	
	mirror		tokamak	tokamak	
Plasma temperature T, keV	65	70	4050	4050	
Vacuum magnetic field B ₀ , T	517	8	5	11	
Plasma beta β	0.7	0.51	0.40.6	0.090.15	
Synchrotron wall reflectivity Γ_s	0.65	_	0.65	0.92	
Required confinement time τ_{\perp} , s	14	2	5	14	
Plasma radius a, m	1	2	2	2	
Plasma length L , m	4060	5	_	_	
Big toroidal radius R, m	_	_	3	6	
Plasma elongation κ	_	2.5	3.7	2.5	
Plasma current I_p , MA	_	_	87	38	
Total fusion power P_{fus} , MW	650900	950	1500	2500	
Power gain factor Q	10	20	20	20	
Relative bremsstrahlung losses ξ_{br}	0.25	0.210.25	0.4	0.4	
Relative synchrotron losses ξ_s	0.1	~0	0.06	0.33	
Neutron yield ξ_n :					
with selective pumping system	0.05	0.040.06	_	0.12	
with no pumping	0.15	0.120.21	0.13	_	
First wall neutron flux q_n , MW/m ² :					
with pumping	~0.13	~0.5	_	0.14	
with no pumping	~0.4	~1.5	~0.4	_	

Selective drift pumping can be used for the forced selective removal of the charged products moderated to the energy $\varepsilon^*\sim 200\text{-}400$ keV. Such a process does not affect the fuel confinement time. The removed ^3He and T are stored and the obtained ^3He is used as one of the D- ^3He fuel component. A given cycle has some important advantages. First, the major part of tritium has no time for the interaction with deuterium in the reaction (2) that allows one to obtain a great amount of ^3He than that in the first variant. Second, since the reaction (2) is negligible, the neutron flux to the first wall is essentially reduced in comparison with cases with no selective removal. Here, it is important that the reduction occurs due to the most dangerous high energy neutrons with the birth energy ε $_0$ =14.1 MeV.

In this work we consider the possibility of high efficiency operating of D-3He reactors based on different magnetic systems: tandem mirror, field reversed configuration (FRC), classical and spherical tokamaks. Parameters of magnetic reactors using D-3He cycles with 3He self-supply are presented in Table 3. Parameters of a tandem mirror system we calculate according the model developed in Refs. [2, 3]. For the FRC power balance model [11] is used, and for classical and spherical tokamaks calculation model of Ref. [12] is used.

4. CONCLUSIONS

In the framework of presented study the most optimal low-radioactivity fusion cycle appears to be D-³He cycle. Problem of ³He supply for D-³He reactors can be solved by the use of D-³He cycles with ³He self-supply.

According to carried out calculations highest power efficiency of magnetic fusion reactors with D-3He cycles corresponds the high-beta confinement systems such as FRC and spherical tokamak.

REFERENCES

- Feldbaher R. Nuclear Reaction Cross Sections and Reactivity Parameter. IAEA, 1987.
- V.I. Khvesyuk, A.Yu. Chirkov // Tech. Phys. Letters, 2000, v. 26, No. 11, P. 964.
- 3. A.Yu. Chirkov, V.I. Khvesyuk // Fusion Technol., 2001, v. 39, No. 1T, P. 402.
- 4. B.A. Trubnikov, in Reviews of Plasma Physics, Vol. 7 (Ed. M.A. Leontovich), Plenum, New York, 1979
- W.M. Nevins, R. Swain // Nucl. Fusion, 2000, v. 40, P. 865.
- 6. L.J. Wittenberg, J.F. Santarius, G.L. Kulcinski // Fusion Technol., 1986, v. 10, P. 165
- V.I. Khvesyuk, A.Yu. Chirkov // Tech. Phys. Letters, 2001, v. 27, No 8, P. 686.
- 8. V.I. Khvesyuk, A.Yu. Chirkov // Plasma Phys. Control. Fusion, 2002, v. 44, No. 2, P. 253.
- 9. N.V. Shabrov, V.I. Khvesyuk, // Fusion Technol., 1994, v. 26, P. 2.
- 10. V.I. Khvesyuk, N.V. Shabrov, A.N. Lyakhov // Fusion Technol., 1995, v. 27, No. 1T, P. 406.
- 11. A.Yu. Chirkov, V.I. Khvesyuk // Fusion Technol., 2001, v. 39, No. 1T, P. 406.
- 12. A.Yu. Chirkov // Voprosy Atomnoi Nauki i Tekniki, Fusion Ser., 2001, No. 2, P. 36. (in Russian)